
Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 12431

To cite this version : Diouri, Mehdi and Tsafack Chetsa, Ghislain 
Landry and Glück, Olivier and Lefèvre, Laurent and Pierson, Jean-
Marc and Stolf, Patricia and Da Costa, Georges Energy efficiency in 
high-performance computing with or without knowledge of 
applications and services. (2013) International Journal of High 
Performance Computing Applications, vol. 27 (n° 3). pp. 232-243. 
ISSN 1094-3420 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12431/
http://oatao.univ-toulouse.fr/12431/
http://oatao.univ-toulouse.fr/12431/
mailto:staff-oatao@listes-diff.inp-toulouse.fr












■ RAM Logging c HDD Logging Coordination � Checkpointing 

8.00 
-

� 7.00 
6.00 
5.00 

� 4.00 
:.a 
� 3.00 

.i 
ü 
0::: 

2.00 
1.00 
0.00 

CMI 

1 

1 

SP 
Applications 

BT EP 

Figure 7. Relative difference (in %) between the estimated and 
the measured energy consumption. 

application, we measure the total energy consumption of 
one application execution with and without the basic oper­
ations activated in the fault tolerance protocols. To this end, 
we instrumented the code of fault tolerance protocols and 
we obtain the energy consumption of each operation. Each 
energy measurement is done 30 times and we compute the 
average value. For checkpointing measurements, we con­
sider a checkpoint interval of 120 seconds. 

In Figure 7, we compare our energy estimations to real 
measurements. The relative differences between the esti­
mated and the measured energy consumptions are low. 
lndeed, the worst relative difference that we obtain is 
7.5%. This shows that our energy estimations are accurate. 
This estimation error may be attributed partly to the pro­
posed estimation method but also partly to the measure­
ment error. By providing the average values over 30 
measurements, we aimed at reducing the impact of the 
measurement error. 

In Figure 8, we plot the estimated energy consumption 
computed by our framework for each basic operation and 
for each application considered. Figure 8 shows that energy 
consumption of one operation is not the same from one 
application to another. For instance, the energy consu­
mption of RAM logging in SP is more important than in 
EP. In addition, HDD checkpointing in CMI is 20 times 
more than in EP. 

2.4. Determination of the least energy consuming 
version of a given service 

The results presented in Section 2.3 allow us to address the 
following question: how our estimator framework can help 
selecting the lowest energy consuming version of the con­
sidered service? To answer this question, the case of the 
checkpointing service is also taken as an example. 

As mentioned before, both uncoordinated and coordi­
nated protocols rely on checkpointing. Checkpointing is 
combined with message logging in uncoordinated protocols 
and with coordination in coordinated protocols. Therefore, 
to compare coordinated and uncoordinated protocols from 
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an energy consumption standpoint, we compare the extra 
energy consumption of uncoordinated to message logging. 

From one application to another the lowest energy con­
suming protocol is not always the same (see Figure 8). 
lndeed, for BT, SP and CM 1, the less energy consuming 
protocol is the coordinated protocol since the volume of 
data to log for these applications is relatively important 
whereas it is the uncoordinated protocol with RAM log­
ging for EP. We also note that for the applications we con­
sidered, the uncoordinated protocol with HDD logging is 
always more energy consuming than the coordinated proto­
col. By providing such energy estimations before executing 
the HPC ·application, we can select the best fault-tolerant 
protocol in tenns of energy consumption. 

3. Energy efficiency in HPC without
knowledge of the applications

HPC systems users generally seek better performance for 
their applications; consequently, any management policy 
that aims at reducing the energy consumption should not 
degrade performance. To mitigate performance degradation 
while improving energy performance, it is mandatory to 
understand the behaviour of the system at hand at runtime. 
Put simply, optimization proposed is closely related to the 
behaviour of the system. For instance, scaling the CPU fre­
quency down to its minimum when running CPU-bound 
workloads may cause significant performance degradation, 
which is unacceptable. Thus, to efficiently optimize a HPC 
system at runtime, it is necessary to identify the different 
behaviours known as phases during execution. In this sec­
tion, we discuss our phase identification approach along with 
management policies. 

The rationale behind this work is that it is possible to 
improve energy performance of a system with nearly no 
performance degradation by carefully selecting power 
saving schemes to apply to the system at a given point in 
time. Several classical well-known techniques set the CPU 
frequency according to estimated usage of the processor 
over a time period (Choi et al., 2006; lsci et al., 2006; Lim 
et al., 2006; Freeh et al., 2008; Rountree et al., 2009). We 



believe that actions on the system at runtime can result in 
energy savings provided they are carefully selected. For 
instance, adjusting the frequency of the processor or the 
speed of the network interconnect (NIC), switching off 
memory banks, spinning down disks, and migrating tasks 
among nodes of the system, are ways of adjusting the sys­
tem to the actual demand (or applications' requirements) at 
runtime. 

From what precedes, choosing the appropriate lever 
(power saving scheme) is critical; an effective way of 
choosing between the different levers is to first characterize 
phases or the system 's behaviours so that similar phase pat­
terns can easily be identified with each other. ln so doing, a 
set of power saving schemes deemed efficient both in terms 
of energy and performance for a given phase can be used 
for recurring phases. This is accomplished by associating 
a set of levers to each characterized phase. Details 
with regards to phase characterization are provided in 
Section 3.1. 

Once phases are characterized, the next step boils down 
to identifying (still at runtime) recurring phases in order to 
apply adequate power saving schemes. To accomplish this, 
we use an approach which we refer to as partial phase rec­
ognition. Instead of trying to recognize a complete phase 
prior to adjusting the system (which might lead to an unex­
pected outcome, for the phase is already finished), we 
decide to adjust the system when a certain fraction of a 
phase bas been recognized. This technique is clearly giving 
false positives (an ongoing phase is recognized as part of a 
known phase in error), but we argue that the adjustment of 
the system is beneficial at least for a certain time. When the 
ongoing phase diverges too much from the recognized 
phase, another phase can be identified or a new phase char­
acterized. Phase identification and partial recognition are 
detailed in Section 3.2. 

3.1. Phases tracking and characterizing 

Our methodology relies on the concept of an execution vec­
tor (EV) which is similar to power vectors (PVs) (lsci and 
Martonosi, 2003). An EV is a column vector whose entries 
are system metrics including hardware performance coun­
ters, network bytes sent/received and disk read/write 
counts. For convenience, we will refer to these system 
metrics as sensors in the rest of the article. Sensors related 
to hardware performance counters represents the access 
rate to a specific hardware register over a given time inter­
val. Likewise, network- and disk-related sensors monitor 
network and disk activities, respectively. We refer to the 
literature (Freeh et al., 2008; Lim et al., 2006; Isci et al., 
2006; Choi et al., 2006) for selecting sensors related to 
hardware performance counters, these include: number of 
instructions, last level cache accesses and misses, branch 
misses and predictions, etc. The sampling rate correspond­
ing to the time interval after which each sensor is read 
depends on the granularity. While a larger sampling rate 
may bide information regarding the system's behaviour, a 

smaller sampling rate may incur a non-negligible overhead. 
In this work we collect one measurement per second. In 
addition, each EV is timestamped with the time at which 
it is sampled. 

The Manhattan distance between two points in an n­
dimensional space is the distance between them if a grid­
like path is followed. lt offers the advantage that it does not 
depend on the translation of the coordinate axes with 
respect to a coordinate axis, i.e. it weights more heavily dif­
ferences in each dimension. Properties just mentioned 
moti vate our use of the Manhattan distance as the resem­
b lance or similarity metric between EVs. This similarity 
is used to cluster EVs along the execution timeline as fol­
lows: two consecutive EVs along the execution timeline 
belong to the same group or are similar if the Manhattan 
distance between them is bellow a similarity threshold 
( denoted as ST in the following). We de fine the similarity 
threshold as a percentage of the maximum known distance 
between ail consecutive EVs (along the execution time­
line ). For example, given a similarity threshold of 10%, two 
consecutive EVs belong to the same group if the Manhattan 
distance between them is less than 10% of the maximum 
existing distance between ail consecutive EVs. 

K.nowing that the behaviour of the system is relatively 
stable during a phase and assuming that stability is trans­
lated into EVs sampled during the phase, we define a phase 
as any behaviour delimited by two successive Manhattan 
distances exceeding the similarity threshold. Therefore, let 
us consider the graphie of Figure 9, where the x-axis repre­
sents the execution timeline; with a similarity threshold of 
15%, we can observe 5 phases as indicàted by the step func­
tion. Note that the threshold varies throughout the system's 
lifetime since the maximum existing vector is re-initialized 
once a phase is detected. lt can be seen in Figure 9 that a 
phase change is detected when the Manhattan distance 
between two consecutive EVs exceeds the threshold (which 
is 15% of the maximum distance between consecutive EVs 
from the moment at which the last EV of the previous phase 
was sampled). We can also observe that these phases corre­
spond to variations reported in the access rate of plotted 
performance counters ( only a few performance counters are 
plotted for the sake of clarity). For this experiment, the sys­
tem was nmning a synthetic benchmark which successively 
runs IS and EP from NPB-3.3 (Bailey et al., 1991). 

The rationale behind phase tracking is the use of charac­
teristics of known phases for optimizing similar phases. An 
effective phase characterization is therefore needed. To this 
end, once a phase is detected, we apply principal compo­
nent analysis (PCA) on the dataset composed of EV s per­
taining to that phase. We next keep five sensors among 
those contributing the least to the first principal axis (FPA) 
of PCA. Those five sensors serve as characteristic of the 
corresponding phase. PCA is a variable reduction proce­
dure, and is used for identifying variables that shape the 
underlying data. In PCA, the first principal component 
explains the largest variance, which intuitively means that 
it contains the most information and the last principal 
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Figure 9. Phase identification using similarities between consec­
utive EVs; steps of the step function indicate phase changes. 

component/axis the least. Therefore, we assume that the 
most important variables are those that contribute the most 
to the first principal component or axis. In other words, the 
most contributing variables shape the underlying data, as 
opposite to the least contributing variables which do not. 
But the fact that the least contributing variables do not 
shape the underlying data is also interesting because they 
eventually shape what is not in the underlying data. Thus, 
relying on this, we assume that information regarding what 
the system did not do during a phase can be easily retrieved 
from sensors contributing the least to the FPA of PCA 
(since they are meaningless to that phase). A phase is there­
fore characterized by the five sensors among those contri­
buting the least to the FP A of PCA. These five sensors 
are not always the same, since the least contributing sensors 
depend on the activity of the system during the phase. In 
addition, we summarize each newly detected phase using 
the closest vector to the centroid of the group of vectors 
sampled during that phase. The closest vector to the cen­
troid of the group of EV sampled during a phase is referred 
to as its reference vector. 

3.2. Partial phase recognition and system adaptation 

A phase cannot be detected unless it is finished, in which 
case any system adaptation or optimization accordingly is 
no longer worthwhile. The literature (Lim et al., 2006; Choi 
et al., 2006) recommends phase prediction. Predicting the 
next phase allows adapting the system accordingly. 
Although phase prediction is very effective in some cases, 
it is not relevant in this context, for we do not have any a 
priori knowledge of applications sharing the platform. To 
overcome this limitation, we use partial phase recognition. 

Partial phase recognition consists of identifying an ongoing 
phase (the phase has started and is not yet finished) P; with a 
known phase Pi only considering the already executed part of 

Table 1. Translation of phase characteristics into system 
adaptation. 

Sensors selected from PCA 
for phase characterization Decisions 

Cache_references; 
1/0 related sensors; 
Cache_misses 
No 1/0 related sensors 

Instructions 
Last level cache misses (lie) 
Instructions or lie; 

1/0 related sensors; 
1/0 related sensors 
1/0 related sensors 
(low computation and 

communication­
intensive) 

CPU frequency set to its maximum; 
Spin the disk down; 
Network speed scaled down 
CPU frequency scaled down; 
Network speed scaled up 
CPU frequency set to its minimum; 
Network speed scaled up 
CPU frequency set to its average 

value; 
Network speed scaled down; 
Spin the disk down 
CPU frequency set to its maximum; 
Network speed scaled up 

P1 • The already executed part of P; expressed as a percentage
of the length (duration) of Pi is referred to as the recognition
threshold RT. Thus, with a RT% recognition threshold, and
assuming that the reference vector of Pi is EVp

i 
and that its

length is llj, an ongoing phase P; is identified with Pi if the
Manhattan distance between EV p

i 
and each EV pertaining to

the already executed part of P; ( corresponding in length to
RT% of llj) are within the similarity threshold ST.

As a use case of our phase tracking methodology, we use 
the coupling of phase trac king and partial phase recognition to 
guide on-the-fly system adaptation considering the processor. 
We define three computational levels according to the charac­
teristics of the workload: 'high' for compute intensive work­
load, 'medium' for memory intensive workloads and 'low' 
for non-memory/non-compute intensive workloads. 

As mentioned earlier in this article, PCA is applied to 
vectors belonging to any newly created phase for selecting 
five sensors which are used as phase characteristics. These 
characteristics are translated into system adaptation as 
detailed in Table 1. Let us comment on a few entries of that 
table: workloads/applications with frequent cache refer­
ences and misses are likely to be memory bound. In our 
case, having these sensors ( cache reference and cache 
misses) selected from PCA indicates that the workload is 
not memory bound. If in addition that workload does not 
issue a high 1/0 rate (presence of 1/0 related sensors in the 
first column), then we assume that it is CPU-bound; conse­
quently, the frequency of the processor can be scaled to its 
maximum, the disk sent to sleep and the speed of the inter­
connect scaled down. For the second line of Table 1, the 
characteristics do not include any 1/0 related sensor, this 
implies that the system was running an 1/0 intensive work­
load; thus, the processor's speed can be set to its minimum. 
Note in passing that changing the disk' s state from sleep to 
active does not appear in Table l, this is because the disk 
automatically becomes active when accessed. 
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3.3. Experimental validations 

Our evaluation support is a 15-node cluster set up on the 
Grid5000 (Cappello et al., 2005) French large-scale experi­
mental platfonn. Each node is an Intel Xeon X3440 with 4 
cores and 16 OB of RAM with frequencies ranging from 
1.20 to 2.53 GHz. In our experiments, low computational 
level always sets the CPU frequency to the lowest available 
( 1.20 GHz), whereas high and medium computational lev­
els set the CPU frequency to the highest available (2.53 
GHz) and 2.00 GHz, respectively. Each node uses its own 
bard drive which supports active, ready and standby states. 
Infiniband-20O is used for interconnecting nodes. The 
Linux kemel 2.6.35 is installed on each node where perf 
event is used to read the hardware monitoring counters. 
MPICH is used as MPI library. Lower-Upper Gauss-Seidel 
solver (LU), Scalar Penta-diagonal solver (SP), and Block 
Tridiagonal solver (BT) from NPB-3.3 and a real-life 
application, the Advance Research WRF (WRF-ARW) (Ska­
marock et al., 2005) model, are used for the experiments. 
Class C ofNPB benchmarks are used (compiled with default 
options). WRF-ARW is a fully 

_
compressible conservati��­

form non-hydrostatic atmosphenc model. 1t uses an exphc1t 
time-splitting integration technique to efficiently integrate the 
Euler equation. We monitored each node power usage with 
one sample per second using a power distribution unit. 

To evaluate our management policy, we consider three 
basic configurations of the monitored cluster: (i) on­
demand configuration in which Linux's 'on-demand' CPU 
frequency scaling governor is enabled on ail of the nodes of 

the cluster; (ii) the 'perfonnance' configuration sets each 
node's CPU frequency scaling governor to 'performance'; 
(iii) the 'phase-detect' configuration corresponds to the
configuration in which we detect phases, identify them
using partial recognition and apply green levers accord­
ingly. Figure IO(a) presents the nonnalized average energy
consumption of the overall cluster for each application
under the three clusters' configurations, whereas Figure 9
shows their execution time respectively. The results are
nonnalized with respect to the baseline execution ( on
demand) and averaged over 20 executions of each work­
load in each configuration. Figure IO(a) and (b) indicate
that our management policy (phase-detect) consumes on
average 15% less energy than 'perfonnance' and 'on­
demand' while offering the same perfonnance for the real
life application WRF-ARW. For LU, BT and SP the aver­
age energy gain ranges from 3% to 6%. Overall, the max­
imum amount of possible energy savings depends on the
workload at band and was 19% for WRF-ARW. We are
currently investigating whether we can do better with com­
plete knowledge of the application.

From Figure l O(b ), we notice a perfonnance loss of less 
than 3% for LU and BT (perfonnances are evaluated in 
tenns of execution time ). Bad perf onnance with bench­
marks come from the fact that some phases were wrongly 
identified as being memory intensive. Nevertheless, these 
results are similar to those observed in earlier work (Lively 
et al., 2011 ). In addition, these applications do not offer 
many opportunities for saving energy without degrading 



perfonnance. In contrast, the numerical weather forecast 
model (WRF-AR W) has load imbalance which can help 

to reduce its energy consumption without a significant 
impact on its perfonnance (in terms of execution time) 
(Chen et al., 2005; Kimura et al., 2006). 

Above results demonstrate the effectiveness of our sys­
tems' energy management scheme based on phase detec­
tion rnd partial recognition. Our system perfonns better 
than Linux's govemor because Linux's on-demand gover­
nor will not scale the CPU frequency down unless the sys­
tem 's load decreases below a threshold. The problem at this 
point is that the CPU load generally remains very high for 
memory intensive workloads/phases that do not require the 
full computational power. In this particular scenario, net­
work and disk bound phases are too short ( from millise­
conds to a few seconds) and are often considered as 
boundaries of memory or compute intensive phases. For 
this reason, we tumed our focus to the processor. Therefore, 
the energy reduction mainly came from scaling the CPU 
down in phases suspected to be memory bound. 

4. Conclusion

Energy efficiency is becoming one of the mandatory para­
meters that must be taken into account when operating 
HPC systems. In this article, we describe and analyse some 
approaches to reduce the energy consumed by HPC sys­
tems at nmtime. HPC applications and services becoming 
increasingly complex and difficult to program in the era 
of petascale and yet to come exascale; application 
designers have to confront resource usage, stability, scal­
ability and performance. 

This article shows the importance of helping users in 
making the right choices in terms of energy efficient ser­
vices. We present a framework that estimates the energy 
consumption of fault tolerance protocols. In our study, 
we consider the three families of fault tolerance protocols: 
coordinated, uncoordinated and hierarchical. To provide 
accurate estimations, the framework relies on an energy 
calibration of the execution platfonn and a user description 
of the execution settings. Thanks to our approach based on 
a calibration process, this framework can be used in any 
energy monitored supercomputer. We have shown in this 
article that the energy estimations provided by the frame­
work are accurate. By estimating the energy consumption 
of fault tolerance protocols, such a framework allows selec­
tion of the best fault tolerant protocol in terms of energy 
consumption without pre-executing the application. A 
direct application of our energy estimating framework is 
the energy consumption optimization of fault tolerance 
protocols. 

In addition, proposing solutions that could apply power 
saving schemes (shutdown or slowdown of resources) with­
out human intervention and knowledge is a promising 
approach for automatic large-scale energy reduction. This 
article proposes an approach based on: (i) phase detection 
which attempts to detect system phases or behaviour 

changes; (ii) phase characterization which associates a 
characterization label to each phase (the label indicates the 
type of workload); (iii) finally, phase identification and sys­
tem reconfiguration attempt to identify recurring phases 
and make reactive decisions when the identification pro­
cess is successful. Such an approach allows additional 

energy gains. 
Fuh1re works will cover the estimation and calibration of 

a larger set of services ( data exchanges, visualization, mon­
itoring). We also plan to investigate combined solutions in 
order to automatically improve HPC systems deploying 
energy efficient applications and services. 
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Notes 

l. See http://www.green500.org.
2. See http://www.top500.org.
3. Cloud Model 1; see http://www.mmm.ucar.edu/people/

bryan/cm 1/.
4. See http://www.nas.nasa.gov/publications/npb.html.
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