OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Transportation interoperable planning in the context of food supply chain

Memon, Muhammad Ali. Transportation interoperable planning in the context of food supply chain. PhD, Institut National Polytechnique de Toulouse, 2014

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002825/

Abstract

Eating is human’s basic necessity whose survival depends on both quantity and quality of food. Increasing population requires increasing in quantity of food, while quality is associated with the food product constraints like short shelf-life, temperature sensitiveness, climate etc. Increasing demand causes increase in food production, which is distributed between several production sites involving several distinct entities from small to large enterprises, where sites may use the intermediate products of other sites to produce the final products. Moreover, food products need to be transported between sites and final products to be distributed to faraway retailer sites and consumers considering the food product constraints. Activities performed by these entities include but not limited to: production, distribution, sales, etc. and these entities form jointly in the environment of food ecosystem a chain for food gathering, processing, packaging, delivery etc. This distributed network of enterprises is called food supply chain (FSC). Due to FSC’s distributed nature, it inherits not only the common problems also faced by other supply chain, but in addition has to deal with the problems arising from the perishability of food products. This perishability nature makes extremely important for FSC, the handling of issues such as maintaining the quality of food products, forecasting the product demand, managing the inventory according to the forecast to reduce out of stock or excessive inventory of products, improving the efficiency of replenishment, production and transportation, taking into account product future demand and tracing and tracking to react to disturbance. Finally, it is necessary to institute collaboration between the main entities of food ecosystem to deal with all of these issues. Furthermore, since the advent of specialized transport enterprises, a new actor has emerged called transporter or logistics provider in the FSC. These transporters have to collaborate with producers, retailers and even other transporters within FSC to take into account product future demands and trends to organise their transport network and resources to make possible the delivery of the food products with security, while maintaining the quality of the food products. Thus, collaboration became vital for FSC. Collaboration involves a good understanding of exchanged information in order to minimizing number of transport travels, cost and environmental pollution. Interoperability problem arises when each of the partners involved in FSC uses heterogeneous systems and uses different standards and terminologies for representing locations, product constraints, vehicles types etc. Furthermore, existing collaborative approaches like Quick Response, Efficient Consumer Response, Vendor Managed Inventory, Collaborative Planning Forecasting and Replenishment (CPFR), etc. take into account only two types of actors of FSC: buyer and seller (producer and retailer). Additionally, they don’t consider the production and transportation planning as collaborative tasks. Taking into account above limitations, we propose, in the first phase of this thesis, an extension of CPFR model, which take into account production and transportation aspects. This new model C-PRIPT (Collaborative -Planning Replenishment Inventory Production and Transportation) includes transporter actor and elaborates production and transportation planning as collaborative activities. In the second phase, we propose a distributed and interoperable transportation planning model I-POVES (Interoperable - Path Finder, Order, Vehicle, Environment and Supervisor) to realise collaborative transportation planning by collaborating producers, transporters and retailers, aiming at a better use of transport resources. Finally, we illustrate the functioning of I-POVES model by applying it on a case study of food supply chain.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Archimède, Bernard
Statistics:download
Deposited By: admin admin
Deposited On:03 Dec 2014 22:58

Repository Staff Only: item control page