OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Étude expérimentale et modélisation de l’oxydation à haute température et des transformations de phases associées dans les gaines en alliage de zirconium.

Mazères, Benoît. Étude expérimentale et modélisation de l’oxydation à haute température et des transformations de phases associées dans les gaines en alliage de zirconium. PhD, Science et Génie des Matériaux, Institut National Polytechnique de Toulouse, 2013

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6MB
[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
7MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002751/

Abstract

Parmi les scénarios accidentels hypothétiques étudiés dans le cadre des études de sûreté des Réacteurs à Eau Pressurisée (REP), figure l’Accident par Perte de Réfrigérant Primaire (APRP). Dans ce scénario, les gaines en alliage de zirconium qui contiennent le combustible nucléaire sont soumises à une oxydation importante à haute température (T≈ 1200 °C) dans de la vapeur d’eau. Les gaines étant la première barrière de confinement des radioéléments, il est primordial qu’elles conservent une certaine ductilité résiduelle après la trempe pour conserver son intégrité. Cette propriété est directement liée aux cinétiques de croissance de la zircone et de la phase αZr(O), ainsi qu’au profil de diffusion de l’oxygène dans le métal au cours du régime transitoire. Dans ce cadre, la compréhension et la modélisation du phénomène d’oxydation et de diffusion de l’oxygène dans les alliages de zirconium à haute température ont fait l’objet de cette thèse. Le modèle cinétique (EKINOX-Zr), développé au cours de cette thèse, est basé sur la résolution numérique d’un problème de diffusion/réaction avec des conditions aux limites sur trois interfaces mobiles : gaz/oxyde, oxyde/αZr(O) et αZr(O)/βZr. Le couplage du code cinétique avec le logiciel ThermoCalc et la base de données thermodynamiques Zircobase permet de prendre en compte l’influence des éléments d’alliages (Sn, Fe, Cr, Nb) et de l’hydrogène. Cette étude s’est plus particulièrement intéressée à deux aspects de l’APRP : l’influence d’une couche de pré-oxyde (formée aux températures des conditions de service du réacteur) et les effets de l’hydrogène. Grâce au couplage avec la base thermodynamique Zircobase, l’effet de l’hydrogène sur les limites de solubilité de l’oxygène dans les différentes phases a pu être pris en compte dans le modèle cinétique. Les simulations ont ainsi permis de reproduire les profils de concentration en oxygène mesurés sur différents échantillons pré- hydrurés. Par ailleurs, l’existence de couche de pré-oxyde de forte épaisseur peut conduire à une réduction transitoire de la couche de pré-oxyde dans les premiers instants du palier à haute température sous vapeur d’eau, avant formation de l’oxyde haute température. Une première série de simulations à l’aide du modèle cinétique EKINOX-Zr a permis de reproduire qualitativement ce chemin cinétique et a montré que cette couche formée à basse température possède des propriétés de diffusion particulières. Des expériences de traceurs sous 16O2/18O2 ont été réalisées sur des gaines pré-oxydées en autoclave pour étudier la diffusion de l’oxygène à haute température dans ces couches formées à basse température. D’autre part, le modèle cinétique EKINOX-Zr a été modifié pour prendre en compte la diffusion des traceurs. La confrontation des expériences avec les calculs a permis d’étudier les propriétés de diffusion particulières de la couche d’oxyde basse-température ainsi qu’une évolution des propriétés de diffusion de la phase αZr(O) formée par dissolution de l’oxyde à haute température.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Laboratory name:
Research Director:
Monceau, Daniel and Desgranges, Clara
Statistics:download
Deposited On:30 Jun 2014 21:58

Repository Staff Only: item control page