OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

A 'reciprocal' theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number - CORRIGENDUM

Magnaudet, Jacques A 'reciprocal' theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number - CORRIGENDUM. (2011) Journal of Fluid Mechanics, 689. 605-606. ISSN 0022-1120

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1017/jfm.2011.475


Several forms of a theorem providing general expressions for the force and torque acting on a rigid body of arbitrary shape moving in an inhomogeneous incompressible flow at arbitrary Reynolds number are derived. Inhomogeneity arises because of the presence of a wall that partially or entirely bounds the fluid domain and/or a non-uniform carrying flow. This theorem, which stems directly from Navier–Stokes equations and parallels the well-known Lorentz reciprocal theorem extensively employed in low-Reynolds-number hydrodynamics, makes use of auxiliary solenoidal irrotational velocity fields and extends results previously derived by Quartapelle & Napolitano (AIAA J., vol. 21, 1983, pp. 911–913) and Howe (Q. J. Mech. Appl. Maths, vol. 48, 1995, pp. 401–426) in the case of an unbounded flow domain and a fluid at rest at infinity. As the orientation of the auxiliary velocity may be chosen arbitrarily, any component of the force and torque can be evaluated, irrespective of its orientation with respect to the relative velocity between the body and fluid. Three main forms of the theorem are successively derived. The first of these, given in (2.19), is suitable for a body moving in a fluid at rest in the presence of a wall. The most general form (3.6) extends it to the general situation of a body moving in an arbitrary non-uniform flow. Specific attention is then paid to the case of an underlying timedependent linear flow. Specialized forms of the theorem are provided in this situation for simplified body shapes and flow conditions, in (3.14) and (3.15), making explicit the various couplings between the body’s translation and rotation and the strain rate and vorticity of the carrying flow. The physical meaning of the various contributions to the force and torque and the way in which the present predictions reduce to those provided by available approaches, especially in the inviscid limit, are discussed. Some applications to high-Reynolds-number bubble dynamics, which provide several apparently new predictions, are also presented.

Item Type:Article
Additional Information:Thanks to Cambridge university press. The original publication is available at http://journals.cambridge.org
HAL Id:hal-00908114
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:22 Nov 2013 11:45

Repository Staff Only: item control page