Magnaudet, Jacques A 'reciprocal' theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. (2011) Journal of Fluid Mechanics, 689. 564604. ISSN 00221120

(Document in English)
PDF (Author's version)  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader 748kB 
Official URL: http://dx.doi.org/10.1017/jfm.2011.363
Abstract
Several forms of a theorem providing general expressions for the force and torque acting on a rigid body of arbitrary shape moving in an inhomogeneous incompressible flow at arbitrary Reynolds number are derived. Inhomogeneity arises because of the presence of a wall that partially or entirely bounds the fluid domain and/or a nonuniform carrying flow. This theorem, which stems directly from Navier–Stokes equations and parallels the wellknown Lorentz reciprocal theorem extensively employed in lowReynoldsnumber hydrodynamics, makes use of auxiliary solenoidal irrotational velocity fields and extends results previously derived by Quartapelle & Napolitano (AIAA J., vol. 21, 1983, pp. 911–913) and Howe (Q. J. Mech. Appl. Maths, vol. 48, 1995, pp. 401–426) in the case of an unbounded flow domain and a fluid at rest at infinity. As the orientation of the auxiliary velocity may be chosen arbitrarily, any component of the force and torque can be evaluated, irrespective of its orientation with respect to the relative velocity between the body and fluid. Three main forms of the theorem are successively derived. The first of these, given in (2.19), is suitable for a body moving in a fluid at rest in the presence of a wall. The most general form (3.6) extends it to the general situation of a body moving in an arbitrary nonuniform flow. Specific attention is then paid to the case of an underlying timedependent linear flow. Specialized forms of the theorem are provided in this situation for simplified body shapes and flow conditions, in (3.14) and (3.15), making explicit the various couplings between the body’s translation and rotation and the strain rate and vorticity of the carrying flow. The physical meaning of the various contributions to the force and torque and the way in which the present predictions reduce to those provided by available approaches, especially in the inviscid limit, are discussed. Some applications to highReynoldsnumber bubble dynamics, which provide several apparently new predictions, are also presented.
Item Type:  Article 

Additional Information:  Thanks to Cambridge university press. The original publication is available at http://journals.cambridge.org 
HAL Id:  hal00907975 
Audience (journal):  International peerreviewed journal 
Uncontrolled Keywords:  
Institution:  French research institutions > Centre National de la Recherche Scientifique  CNRS (FRANCE) Université de Toulouse > Institut National Polytechnique de Toulouse  Toulouse INP (FRANCE) Université de Toulouse > Université Toulouse III  Paul Sabatier  UT3 (FRANCE) 
Laboratory name:  
Statistics:  download 
Deposited On:  22 Nov 2013 09:39 
Repository Staff Only: item control page