OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow

Bourguet, Rémi and Karniadakis, George E. and Triantafyllou, Michael S. Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow. (2013) Journal of Fluid Mechanics, 717. 361-375.

(Document in English)

PDF ( Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1017/jfm.2012.576


A slender flexible body immersed in sheared cross-flow may exhibit vortex-induced vibrations (VIVs) involving a wide range of excited frequencies and structural wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying profile along the span, are investigated by means of direct numerical simulation. The Reynolds number is equal to 330 based on the maximum velocity, for comparison with previous work on narrowband vibrations in linear shear flow. The flow is found to excite the structure at a number of different locations under a condition of wake–body synchronization, or lock-in. Broadband responses are associated with a distributed occurrence of the lock-in condition along the span, as opposed to the localized lock-in regions limited to the high inflow velocity zone, reported for narrowband vibrations in sheared current. Despite the instantaneously multi-frequency nature of broadband responses, the lock-in phenomenon remains a locally mono-frequency event, since the vortex formation is generally synchronized with a single vibration frequency at a given location. The spanwise distribution of the excitation zones induces travelling structural waves moving in both directions; this contrasts with the narrowband case where the direction of propagation toward decreasing inflow velocity is preferred. A generalization of the mechanism of phase-locking between the in-line and cross-flow responses is proposed for broadband VIVs under the lock-in condition. A spanwise drift of the in-line/cross-flow phase difference is identified for the high-wavenumber vibration components; this drift is related to the strong travelling wave character of the corresponding structural waves.

Item Type:Article
Additional Information:Thanks to Cambridge University Press editor. The original PDF of the article can be found at Journal of Fluid Mechanics website : http://journals.cambridge.org/action/displayJournal?jid=FLM
HAL Id:hal-03523333
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Other partners > Brown University (USA)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Other partners > Massachusetts Institute of Technology - MIT (USA)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Laboratory name:
Deposited On:15 Nov 2013 12:23

Repository Staff Only: item control page