Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr
Eprints ID: 9936

To link to this article: doi:10.1016/j.supflu.2012.11.012
URL: http://dx.doi.org/10.1016/j.supflu.2012.11.012

To cite this version: Medina-Gonzalez, Yao and Tassaing, Thierry and Camy, Séverine and Condoret, Jean-Stéphane Phase equilibrium of the CO2/glycerol system: Experimental data by in situ FT-IR spectroscopy and thermodynamic modeling. (2013) The Journal of Supercritical Fluids, vol. 73. pp. 97-107. ISSN 0896-8446

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Phase equilibrium of the CO$_2$/glycerol system: Experimental data by in situ FT-IR spectroscopy and thermodynamic modeling

Y. Medina-Gonzaleza,b,c,1,2, T. Tassaingc,**, S. Camya,b,1, J.-S. Condoreta,b,**

a Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique UMR CNRS 5503, 4, Allée Emile Monson, F-31030 Toulouse, France
b CNRS, Laboratoire de Génie Chimique, F-31432 Toulouse, France
c Institut de Sciences Moléculaires, UMR 5255 CNRS, Université Bordeaux, 351, cours de la Libération, 33405 Talence Cedex, France

A B S T R A C T

Phase equilibrium experimental data for the CO$_2$/glycerol system are reported in this paper. The measurements were performed using an in situ FT-IR method for temperatures ranging from 40°C to 200°C and pressures up to 35.0 MPa, allowing determination of the mutual solubility of both compounds. Concerning the CO$_2$ rich phase, it was observed that the glycerol solubility in CO$_2$ was extremely low (in the range of 10^{-5} in mole fraction) in the pressure and temperature domains investigated here. Conversely, the glycerol rich phase dissolved CO$_2$ at mole fractions up to 0.13. Negligible swelling of the glycerol rich phase has been observed. Modeling of the phase equilibrium has been performed using the Peng–Robinson equation of state (PR EoS) with classical van der Waals one fluid and EoS/G* based mixing rules (PSRK and MHV2). Satisfaction agreement was observed between modeling results and experimental measurements when PSRK mixing rules are used in combination with UNIFAC model, although UNIFAC predictive approach gives unsatisfactory representation of experimental behavior.

Keywords: Glycerol
Supercritical CO$_2$
Biphasic system
Phase equilibrium
Infrared spectra
Thermodynamic modeling

1. Introduction

Recently, interest in biphasic systems, which couple supercritical CO$_2$ and a conventional liquid solvent have been highlighted [1,2], as they can provide innovative reaction media. The interest of these biphasic systems is maximum when the partner solvent is a biosourced solvent because such systems become then environmentally friendly. Such biphasic systems are useful to overcome the limited solvating power of pure scCO$_2$, especially in respect to homogeneous catalysis where in this case catalysts can be more easily solubilized in the liquid solvent. They can also alleviate the drawback of the conventional use of biosourced solvents whose low volatility usually handicaps easy recovery of the reaction products. Indeed, supercritical CO$_2$ can be used to recover the reaction products by extraction from the liquid phase. In addition, these biphasic systems can be considered as intensified systems because, in this case, reaction and separation are operated in one single step.

Among the biosourced solvents, glycerol is of prime interest as it is a byproduct in biodiesel fabrication and it is therefore very easily available. Provided its potential own chemical reactivity is not problematic, glycerol can be proposed as an alternative reaction medium for water, when water is not suitable due to its hydrolytic power or in the case of dehydration reactions for instance. Glycerol has been shown to be an interesting alternative for different organic synthesis [3,4] as for instance selective reduction of aldehydes, ketones and β-ketoesters with NaBH$_4$ [5]. Several other examples have been gathered in a review by Díaz-Alvarez et al. [6]. Studies by Jérôme and Gu [7–9], have shown that, in some reactions, such as the Aza-Michael reaction of p-anisidine and the Michael reaction of indole, glycerol used as solvent is capable to achieve yields up to 80% under catalyst-free conditions, these yields being higher than those obtained with usual solvents. The same research group has developed a series of catalysts combined with sugar-based-surfactants of organic substrates which favors mass transfer of organic substrates and limits the undesired reactivity of glycerol [10]. However, drawbacks in the utilization of non-volatile solvents, such as glycerol, are still the uneasy recovery of products and recycling of catalysts. In this context, biphasic systems using supercritical CO$_2$(scCO$_2$) as a partner phase make it possible the solubilization of the catalyst in the glycerol phase while products are extracted by scCO$_2$ [9,11,12].

In this context, one prerequisite for effective design and control of such biphasic systems is the knowledge of the phase equilibrium.
of the mixture. Also, understanding the effects of dissolved CO$_2$ on the physicochemical properties of the glycerol–rich phase is important for reaction design [13,14]. Indeed, CO$_2$ modifies the polarity of the solvent and, for instance, from this effect, initially miscible compounds are likely to become immiscible when the solvent is pressurized with CO$_2$, even at moderate pressures (5.0 MPa) [15]. So, CO$_2$ can then act as a switch to control the polarity and solvating properties of the partner solvent, allowing recovery of catalysts, products, byproducts, and so on. Despite this recent growing interest for scCO$_2$/glycerol system, phase equilibrium experimental data are scarce and not yet fully validated. Only two studies upon experimental determinations of solubility of glycerol in pressurized CO$_2$ have been published [16,17] and their results are not in coherence. To perform accurate measurements of concentrations of the phases in equilibrium, the technique of in situ FTIR spectroscopy can be proposed. This method has been previously successfully applied in phase equilibrium studies for the determination of the CO$_2$ sorption and swelling in liquids [18,19] and in polymers [20,21]. In particular, we would like to stress that molar absorption coefficients of CH-stretching vibrational modes and combination bands are expected to exhibit little sensitivity upon temperature and pressure conditions [20,22,23]. For example, Buback et al. [24] have shown that the molar absorption coefficient of combination bands of CO$_2$ were almost independent of the CO$_2$ density. Therefore, IR spectroscopy allows determining the concentration of a given specie in a mixture with a statistical error lower than 10%.

Also, modeling of scCO$_2$–glycerol phase equilibrium has been already proposed [25] but the lack of experimental results did not allow validation of the model. Such calculations are useful but accurate prediction of CO$_2$–glycerol phase equilibrium has not been yet fully developed and compared with experimental results.

In this context, the purpose of the present work is to experimentally determine the phase behavior of the CO$_2$/glycerol system using in situ FTIR spectroscopy and to propose an adequate thermodynamic modeling of the phase equilibrium data.

2. Experimental

2.1. Materials

Dry glycerol with purity of ≥99.5% was purchased from Sigma–Aldrich; water content was determined by titration with a Mettler-Toledo DL38 Karl–Fischer titrator and found to be 0.04%. CO$_2$ N45 was obtained from Air Liquide. All chemicals were used without further purification. A BioRad FTS-60A interferometer equipped with a globar as infrared source, a KBr/Ge beamsplitter and a DTGS (deuterated triglycerine sulfate) detector has been employed to record single beam spectra in the range of 400–6000 cm$^{-1}$. Single beam spectra recorded with 2 cm$^{-1}$ resolution were obtained from the Fourier transformation of 30 accumulated interferograms.

2.2. Apparatus and procedure

The high-pressure cell and the infrared setup used for phase behavior determination experiments have been described thoroughly elsewhere [18]. Solubility of glycerol in CO$_2$ has been determined using a cell with an optical path length of 25.3 mm and equipped with germanium windows, employing the following procedure: bottom of the cell was filled with dry glycerol and a magnetic bar was placed inside. The cell was tightly closed then placed inside the interferometer and thermostatted at the desired temperature using cartridge heaters. CO$_2$ was pumped inside the cell to the desired pressure and the system was agitated using a magnetic stirrer. After an equilibration period of at least 3 h, FT-IR spectra of the CO$_2$ rich phase were obtained. During the stabilization of the operating conditions (weak decrease of the pressure between 1 and 10 bar that was compensated with the manual pump), consecutive spectra were recorded every 30 min.

Equilibrium has been considered as reached when at least three consecutive spectra spaced by 30 min did not show any significant absorbance difference. Indeed, as a consequence of the high viscosity of glycerol, it has been observed that equilibration period was temperature dependent and decreased sharply with temperature: at low temperatures (40°C) equilibration needed about 120 h. Two series of measurements have been performed for a number of points in specified conditions of temperature and pressure to check for the reproducibility of the measurements.

CO$_2$ solubility in glycerol was determined using the same system by filling the cell with dry glycerol. The optical path length was fixed to 0.12 mm and sapphire windows were used for this determination. FT-IR spectra of the glycerol-rich phase have then been acquired. Solubility experiments were performed at temperatures ranging from 40 to 200°C and pressures up to 35 MPa.

2.3. Data processing for the determination of mutual solubility and phase equilibrium

Beer–Lambert law ($A = ε \cdot L \cdot c$, where A is the sample absorbance, $ε$ the molar extinction coefficient (L mol$^{-1}$ cm$^{-1}$), L the optical path length (cm) and c the sample concentration (mol L$^{-1}$)) was used to calculate the concentrations of glycerol and CO$_2$ in each phase. In order to determine the concentration of glycerol in the CO$_2$–rich phase, the absorbance of the two peaks centered at about 2933 and 2883 cm$^{-1}$ associated to the νCH stretching mode of glycerol was used.

As baseline correction can induce large errors when peak integrated area is used for quantification, peak height was used for these determinations in order to minimize this error. In order to determine the concentration of glycerol ($c_{glycerol}$) in the CO$_2$–rich phase, molar extinction coefficients ($ε$) for two selected bands of glycerol were determined from spectra of aqueous solutions of glycerol at known concentrations (see Table 1). We emphasize that the signal of the FTIR spectrum of glycerol in the C–H stretching region was the same in water and in CO$_2$ which shows, as it is expected, that the C–H stretching vibrational modes of glycerol are not sensitive to the nature of the solvent. Thus, the concentrations were calculated from the average of the concentration values estimated with the two considered CH peaks of glycerol (see Table 1).

In order to determine the CO$_2$ concentration (c_{CO_2}) in the glycerol-rich phase, the peak height of the 2ν$_2$ + ν$_3$ band of CO$_2$ centered at 3696 cm$^{-1}$ was used. Molar extinction coefficient of this band was determined by recording the infrared spectra of neat CO$_2$ at different temperatures and pressures, the density (concentration) was then obtained from literature [26]. Table 1 shows the obtained $ε$ value.

Mole fraction of glycerol in the CO$_2$–rich phase has been calculated as:

$$x_{glycerol} = \frac{c_{glycerol}}{c_{glycerol} + c_{CO_2}} \quad (1)$$

where $c_{glycerol}$ is the concentration of glycerol as determined by our FTIR measurements and c_{CO_2} is calculated from the NIST data [26].

Table 1 Molar extinction coefficients of glycerol and CO$_2$ for different absorption bands.

<table>
<thead>
<tr>
<th></th>
<th>Glycerol</th>
<th>CO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group frequency</td>
<td>ν$_C-O$</td>
<td>ν$_C-O$</td>
</tr>
<tr>
<td>Wave number (cm$^{-1}$)</td>
<td>2933</td>
<td>2883</td>
</tr>
<tr>
<td>$ε$ (L mol$^{-1}$ cm$^{-1}$)</td>
<td>49.78</td>
<td>47.61</td>
</tr>
</tbody>
</table>
Indeed, as the solubility of glycerol in the CO\textsubscript{2} rich phase is very low (see below), it has been considered that the concentration of CO\textsubscript{2} in the CO\textsubscript{2} rich phase was not affected by the presence of glycerol and equal to that of neat CO\textsubscript{2} under the same temperature–pressure conditions.

Mole fraction of CO\textsubscript{2} in the glycerol-rich phase was obtained from:

\[
x_{\text{CO}_2} = \frac{C_{\text{CO}_2}}{C_{\text{CO}_2} + C_{\text{glycerol}}}
\]

Table 2

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Density (kg/m3)a</th>
<th>Density (kg/m3)b</th>
<th>Relative differencec</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1272.3</td>
<td>1248b</td>
<td>0.19</td>
</tr>
<tr>
<td>60</td>
<td>1281.3</td>
<td>1235b</td>
<td>0.36</td>
</tr>
<tr>
<td>80</td>
<td>1259.2</td>
<td>1223b</td>
<td>0.29</td>
</tr>
<tr>
<td>100</td>
<td>1209.3</td>
<td>1209.27b</td>
<td>0.004</td>
</tr>
<tr>
<td>120</td>
<td>1189.7</td>
<td>1194.46b</td>
<td>0.004</td>
</tr>
<tr>
<td>140</td>
<td>1163.6</td>
<td>1179.51b</td>
<td>0.013</td>
</tr>
<tr>
<td>160</td>
<td>1131.0</td>
<td>1164.6b</td>
<td>0.029</td>
</tr>
<tr>
<td>180</td>
<td>1116.0</td>
<td>1148.64b</td>
<td>0.028</td>
</tr>
<tr>
<td>200</td>
<td>1083.1</td>
<td>1131.78b</td>
<td>0.043</td>
</tr>
</tbody>
</table>

a Data from this study (precision ±5%).
b Data from Ref. [27].
c Calculated as

\[
\text{Relative difference} = \frac{|\text{Density from Table 2} - \text{Density from Ref. [27]}|}{\text{Density from Ref. [27]}}
\]

The computation procedure for the parameter \(a_i(T)\) depends on the temperature and acentric factor values of the compound. For compounds above their critical temperature, \(a_i(T)\) is calculated as recommended by Boston and Mathias [30]:

\[
a_i(T) = [\exp(c_i(1 - T_{c,i}^0))]^2
\]

with

\[
d_i = 1 + \frac{m_i}{2}
\]

\[
c_i = 1 - \frac{1}{d_i}
\]

if \(\omega_i \leq 0.491\) then

\[
m_i = 0.37464 + 1.542266\omega_i - 0.26992\omega_i^2
\]

and if \(\omega_i > 0.491\) then

\[
m_i = 0.37964 + 1.48503\omega_i - 0.164423\omega_i^2 + 0.016666\omega_i^3
\]

Else, if \(T < T_{c,i}\), the conventional expression of \(a_i(T)\) for Peng–Robinson is used:

\[
a_i(T) = [1 + (0.37464 + 1.54226\omega_i - 0.26992\omega_i^2)(1 - \sqrt{T_{c,i}})]^2
\]

if \(\omega_i \leq 0.491\)

\[
a_i(T) = [1 + (0.37964 + 1.48503\omega_i - 0.164423\omega_i^2 + 0.016666\omega_i^3)]^2
\]

if \(\omega_i > 0.491\)

2.4. Phase equilibrium modeling

Thermodynamic modeling was performed using the well-known Peng–Robinson equation of state (PR EoS) [28], i.e., with a different expression of the \(m\) term for compounds with acentric factor greater that the one of n-dodecane (0.491) [29], as it is the case for glycerol. In a first approach, Peng–Robinson EoS has been used with the classical van der Waals one-fluid mixing rule (vdW1f) for \(a\) and \(b\) parameters. Classical combining rules, i.e., geometric mean rule with \(k_i\) binary interaction coefficient for \(a_i\) parameter, and arithmetic mean rule, without any interaction coefficient, for \(b_i\) parameter have been used. Finally, \(a\) and \(b\) parameters of the mixture are obtained from the following equations:

\[
a_i(T) = \sum_{j=1}^{n} z_i z_j \sqrt{a_i a_j (1 - k_{ij})}
\]

where

\[
b = \sum_{i=1}^{n} z_i b_i
\]

\[
a_i(T) = \frac{R^2 T_{c,i}^2}{P_{c,i}^2} \alpha_i(T)
\]

\[
b_i = 0.0777960739 - \frac{RT_{c,i}}{P_{c,i}}
\]
Table 4

Summary of the models used in this work to represent CO2–glycerol phase equilibrium.

<table>
<thead>
<tr>
<th>Name of the global model</th>
<th>Equation of state</th>
<th>Mixing rule</th>
<th>Activity coefficient model</th>
<th>Binary interaction coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>PR</td>
<td>Conventional</td>
<td>–</td>
<td>$k_i = f(T)$</td>
</tr>
<tr>
<td>PSRK-UNIFAC</td>
<td>PR</td>
<td>PSRK</td>
<td>UNIFAC</td>
<td>$A_i = f(T) / A_{ij} = f(T)$</td>
</tr>
<tr>
<td>PSRK-UNIQUAC</td>
<td>PR</td>
<td>PSRK</td>
<td>UNIQUAC</td>
<td>$A_i = f(T) / A_{ij} = f(T)$</td>
</tr>
<tr>
<td>MV2-UNIFAC</td>
<td>PR</td>
<td>MVH-2</td>
<td>UNIFAC Lyngby</td>
<td>$A_i = f(T) / A_{ij} = f(T)$</td>
</tr>
<tr>
<td>MV2-UNIQUAC</td>
<td>PR</td>
<td>MVH-2</td>
<td>UNIQUAC</td>
<td>$A_i = f(T) / A_{ij} = f(T)$</td>
</tr>
</tbody>
</table>

cubic equation of state to polar compounds at high pressure. This is done via the incorporation of the excess Gibbs energy (G^E) in the calculation of the energy parameter, a, of the EOS. The excess Gibbs energy is calculated using an activity coefficient model, Huron and Vidal [31] were the first to propose this approach, and several models based on this concept have then been developed, such as Wong-Sandler, MVH1, MVH2, PSRK, and were successfully applied to describe high pressure fluid phase equilibria of mixtures containing polar compounds ([32,33] as examples). A complete review of EOS/GE mixing rules and their range of application can be found in the recent book of Kontogeorgis and Folas [34].

For the purpose of this study PSRK [35] and MVH2 [36,37] mixing rules have been chosen, in addition to classical vdWf1 mixing rules. Their ability to model the CO2–glycerol thermodynamic behavior has been compared. For both PSRK and MVH2 mixing rules, Peng–Robinson has been used as the equation of state and Eqs. (4)–(13) have been used to evaluate pure component parameters and to calculate mixture parameter b of the PR EOS.

For PSRK and MVH2, mixture parameters are obtained from:

$$q_1 \left(a - \sum_i z_i a_i \right) + q_2 \left(a^2 - \sum_i z_i a_i^2 \right) = \frac{g^E}{RT} + \sum_i z_i \ln \left(\frac{b_i}{b} \right)$$

(14)

$$\alpha = \frac{a}{bRT}$$

(15)

$$\alpha_i = \frac{a_i}{b_iRT}$$

(16)

with a, b, and b obtained from (5), (6) and (4) respectively. In the case of Peng–Robinson equation of state, $q_1 = 0.64663$ and $q_2 = 0$ for PSRK model (explicit calculation of a) and $q_1 = -0.4247$ and $q_2 = -0.003654$ for MVH2 model (implicit calculation of a). Then an activity coefficient model has to be chosen to determine the value of the excess Gibbs energy at zero pressure (reference pressure) g^E. At their initial development, authors of PSRK, so as MVH mixing rules, coupled the SRK or PR equation of state with the UNIFAC predictive activity coefficient model, leading to a predictive way to use cubic equations of state. In the present study, PSRK mixing rule has been used with the PSRK version of UNIFAC model proposed by Fredenslund et al. [38] and modified in such a way that binary interaction coefficients between functional groups depend on temperature [35,39] and with UNIQUAC activity coefficient model [40,41]. In a same way, MVH2 mixing rule is used with the Lingby version of UNIFAC [42]. When UNIQUAC model is used in the mixing rule, two binary interaction coefficients (A_i and A_{ij}) have to be fitted on experimental data. In the present study, because of the large range of investigated temperatures, binary interaction coefficients have been shown to be linearly temperature dependent. Fluid phase equilibria calculations have been performed using Excel (Microsoft) coupled with Simulis© Thermodynamics software (ProSim S.A, France). Simulis© Thermodynamics contains the different models summarized in Table 4. Relative absolute average deviation (expressed in percentage, %AAD) was calculated to evaluate ability of the model to represent experimental data for CO2 mole fraction in liquid phase (x_{CO2}) and glycerol mole fraction in the vapor phase ($y_{glycerol}$). %AAD for a variable z is defined as:

$$\%AAD_z = \frac{1}{N_p} \sum_{i=1}^{N_p} \frac{|z_{exp} - z_{calc}|}{z_{exp}} \times 100 \tag{17}$$

where N_p is the number of experimental values.

3. Results and discussion

3.1. Solubility of glycerol in the CO2-rich phase

Fig. 1a shows the evolution of the infrared spectra in the spectral range 2800–3050 cm$^{-1}$ of glycerol solubilized in the CO2-rich phase with an increase of pressure from 10.0 to 35.0 MPa at 120 °C. A progressive increase of the peaks centered at 2883 cm$^{-1}$ and 2933 cm$^{-1}$ assigned to v_{OH} of glycerol can be observed, resulting from the increase of glycerol concentration. From the intensity of both peaks, the evolution of the solubility of glycerol in the CO2-rich phase as a function of CO2 density at different temperatures (see Fig. 1b) has been calculated.

As it can be observed, the values of solubility are very low, and increment of the CO2 density increases the solubility of glycerol at a given temperature. In fact, glycerol is barely soluble in CO2 at low temperatures and at constant density; a slight increment in temperature induces a significant increase of solubility. Our results are intermediate between the experimental results previously published by Sovova and Khachatryan [17] and by Elsasser and Friedrich [16], which presented a difference of two orders of magnitude between them. The authors have attributed this difference to a 0.37 w/w% difference in the glycerol water content. However, it can be pointed out that the methods used in both studies can induce systematic errors, principally when solute solubility is small (as in the case of glycerol). In both publications, several points are not provided in details, such as analysis methods and equilibration time justification.

Table 5 shows the calculated mole fraction of glycerol in the CO2-rich phase ($y_{glycerol}$) obtained from experimental results of the solubility presented in Fig. 1b.

As can be concluded from these values, a major advantage of the experimental method used in this study lies in its ability to measure very low values of concentration with an acceptable precision.

3.2. Solubility of CO2 and swelling of glycerol in the glycerol-rich phase

As an example, Fig. 2 shows the spectral changes of the glycerol-rich phase occurring with an increase of temperature from 40 to 200 °C at 10.0 MPa as a result of the change in CO2 concentration in that phase. The peak at 3696 cm$^{-1}$, assigned to the combination mode $v_2 + v_3$ of the CO2, decreases with temperature, which results from a decrease of CO2 concentration in the glycerol-rich phase when temperature increases from 40 to 200 °C. The peak detected at 4740 cm$^{-1}$, assigned to the combination of the $v_{OH} + \delta (OH)$ mode of the associated OH of glycerol, presents a shift towards 4865 cm$^{-1}$ (dashed lines) when temperature increases,
which results from a progressive breaking of the hydrogen bond network of glycerol molecules, as previously reported for other alcohols [22]. In fact, glycerol is a highly flexible molecule forming both intra- and inter-molecular hydrogen bonds; molecular dynamics simulations on this molecule have shown that the number of inter-molecular hydrogen bonds decreases when temperature is increased [43,44]. The intensity of the peak at 4350 cm\(^{-1}\) associated to a combination mode \(\nu(CH) + \delta(CH)\) decreases with temperature, as a result of the glycerol density decrease. No glycerol swelling, as a result of \(\text{CO}_2\) solubilization, was observed during our experiments within the \(\pm 5\%\) accuracy of our methodology as it is shown in Fig. 3. Indeed, no changes in the intensity of characteristic bands of glycerol are observed (bands around 4000 cm\(^{-1}\) and 4370 cm\(^{-1}\)) although an increase of the characteristic band of \(\text{CO}_2\) (3696 cm\(^{-1}\)) with pressure is clearly present.

The solubility of \(\text{CO}_2\) in the glycerol-rich phase is reported in kmol/m\(^3\) in Fig. 4 as a function of the pressure. Table 6 presents the \(\text{CO}_2\) mole fraction in the glycerol rich phase \((x_{\text{CO}_2})\) deduced

![Figure 1](image1.png)

Figure 1. (a) Spectral changes of the \(\text{CO}_2\)-rich phase with the pressure at 120 \(^\circ\)C. (b) Solubility of glycerol as a function of \(\text{CO}_2\) molar density at temperatures between 40 \(^\circ\)C and 140 \(^\circ\)C. Lines have been added to guide the eye. Error bars represent the \(\pm 5\%\) of relative error allowed by our method.

![Figure 2](image2.png)

Figure 2. Spectral changes of the glycerol-rich phase with temperature at 10 MPa.
from experimental data of solubility. In all cases, at a given temperature, solubility increases with pressure. Nevertheless, at low temperature (T = 40 ºC), there is a strong increase of the solubility when pressure is increased, up to 10 MPa. For greater pressures, this effect is leveled off. As temperatures increases, a more important effect of pressure has been observed, and at T = 200 ºC, this effect is maximal. In all cases, temperature has a negative effect on solubility of CO₂ in glycerol in the temperature and pressure ranges studied. It can be observed that the shape of the curves of CO₂ solubility as a function of the pressure is different above 140 ºC. This behavior may be the consequence of a significant weakening of the hydrogen bonded structure of glycerol above this temperature.

3.3. Phase diagram of the scCO₂/glycerol system

3.3.1. Experimental results

Phase diagram for the CO₂–glycerol system has been obtained from solubility measurements for temperatures ranging from 40 ºC to 200 ºC and pressures up to 35 MPa and is presented in Fig. 5a. As described above, quite low mutual solubility is observed between CO₂ and glycerol in the pressure and temperature ranges studied here. In the case of the glycerol-rich phase, low quantities of CO₂ can be dissolved. However, at 30 MPa and 40 ºC, a CO₂ mole fraction of up to 0.13 (Fig. 5b) can be obtained.

Concerning the CO₂-rich phase, whatever the temperature, the quasi-vertical line reveals the low solubility of glycerol in CO₂; a closer look on Fig. 5c indicates an important effect of temperature on glycerol solubility. This behavior is typical for binary systems with compounds of widely different molar mass and/or critical temperatures, such as CO₂/water or CO₂/glycerol systems. Such systems exhibit a liquid–liquid immiscibility zone at low temperatures and belong to type III of the classification of Scott and Konyenenburg [45,46]. The low solubility of glycerol in the CO₂ rich phase is an important characteristic in respect to the development of biphasic reactive systems using glycerol as the catalytic phase and scCO₂ as the reactants and products carrier [12]. Indeed, this insures that low amounts of glycerol are extracted by scCO₂ during the separation step.

3.3.2. Phase equilibrium modeling

Models of Table 4 have been used to describe fluid phase equilibrium of the CO₂/glycerol system. As previously mentioned,
PSRK–UNIQUAC and MHV2–UNIFAC models are predictive, while for PSRK–UNIQUAC and MHV2–UNIQUAC models binary interaction parameters have to be fitted from experimental data. Values of global absolute average deviations, %AAD\textsubscript{CO\textsubscript{2}} and %AAD\textsubscript{glycerol} (Eq. (17)), obtained for each model, together with expressions of fitted binary interaction parameters are given in Table 7. The fitting of experimental data has been done minimizing an objective function (least square method) and results are presented in Table 7 where it is first noticeable that, whatever the model used, the %AAD on both phases are not very good, none of them being below 5%. This shows that, on a global point of view, PR EoS fails to accurately represent experimental behavior of that system, even with EoS/CE mixing rules.

For the PR EoS with classical mixing rule, it has not been possible to use an objective function simultaneously involving composition of liquid phase and composition of the vapor phase in the same resolution, because in that case, it led to globally poor description for both phases. Especially, the very low experimental mole fractions of glycerol in the CO\textsubscript{2} rich phase were systemically largely overestimated. Thus for PR model with classical mixing rule, the optimization method was done firstly with the least square method applied to x\textsubscript{CO\textsubscript{2}} values only (entry 1), that explains the rather satisfactory value of %AAD (7.7) for the glycerol rich phase in that case; Then the fitting was done on y\textsubscript{glycerol} only (entry 2), giving acceptable %AAD for the vapor phase (61.1, still overestimating the

Table 7

<table>
<thead>
<tr>
<th>Entry</th>
<th>Global model</th>
<th>Binary interaction parameters</th>
<th>%AAD\textsubscript{CO\textsubscript{2}}</th>
<th>%AAD\textsubscript{glycerol}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PR fitted on x\textsubscript{CO\textsubscript{2}} only</td>
<td>k\textsubscript{CO\textsubscript{2}-glycerol} = 0.0007/T - 0.2075 for T \leq 413 K k\textsubscript{CO\textsubscript{2}-glycerol} = 0.025/T - 0.8827 for T > 413 K</td>
<td>7.7</td>
<td>345</td>
</tr>
<tr>
<td>2</td>
<td>PR fitted on y\textsubscript{glycerol} only</td>
<td>k\textsubscript{CO\textsubscript{2}-glycerol} = 0.0007/T + 0.0008</td>
<td>62.2</td>
<td>61.1</td>
</tr>
<tr>
<td>3</td>
<td>PSRK–UNIQUAC fitted on both x\textsubscript{CO\textsubscript{2}} and y\textsubscript{glycerol}</td>
<td>k\textsubscript{glycerol} = -3.007/T + 152.31 A\textsubscript{glycerol-CO\textsubscript{2}}/mol -1 = 3.847/T - 1056.75</td>
<td>18.4</td>
<td>57.2</td>
</tr>
<tr>
<td>4</td>
<td>PSRK–UNIFAC</td>
<td>k\textsubscript{glycerol} = -7.13.986/T + 358.30 A\textsubscript{glycerol-CO\textsubscript{2}}/mol -1 = -2.81/T + 2109.18</td>
<td>280.3</td>
<td>815.7</td>
</tr>
<tr>
<td>5</td>
<td>MHV2–UNIQUAC fitted on both x\textsubscript{CO\textsubscript{2}} and y\textsubscript{glycerol}</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>MHV2–UNIFAC</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
Figure 7. P-x-y data for the CO₂/glycerol system, experimental data and modeling results. (a and b) 40 °C, (c and d) 80 °C, (e and f) 120 °C, (g) 200 °C (k_i for PR EoS is from Table 7, entry 1).
glycerol mole fraction), but, in this case worse predictions were correlatively found for the liquid phase (62.2). In the case of PR EoS, a detailed study of the influence of temperature upon binary interaction coefficients has been done and results are plotted in Fig. 6. When fitting was realized on \(x_{\text{CO}_2} \) only, two linear correlations have been evidenced, depending on the temperature range. Whatever the temperature, the \(k_y \) value of the PR EoS is positive for this system, as it is often the case because of overestimation of interaction between molecules issued from the use of geometric mixing rule (Eq. (3)). Moreover, the value of \(k_y \) increases with temperature, reflecting the decrease of the solubility of \(\text{CO}_2 \) into the glycerol rich phase and the increase of solubility of glycerol into \(\text{CO}_2 \) rich phase, because self-association of glycerol by hydrogen bonding is weaker at high temperature, as previously mentioned. As can be seen in Fig. 6, influence of temperature on \(k_y \) is more important above 140 °C and this is presumably a consequence of the observed change of the mixture behavior above 140 °C, as it is clearly observable in Fig. 4, where a change of concavity occurs when solubility of \(\text{CO}_2 \) in glycerol rich phase versus pressure is plotted. The similar analysis on \(k_y \) fitted on \(y_{\text{glycerol}} \) shows that, at a same temperature, \(k_y \) value is higher, and the same tendency is observed as a function of the temperature (Fig. 6). Note that experimental vapor phase compositions have been determined for \(T < 140 \) °C only. For the purpose of the targeted application of the \(\text{CO}_2 \)-glycerol system as a biphasic medium to perform reactions, information upon the amount of \(\text{CO}_2 \) solubilized in glycerol is of prime interest because of the consequences upon physico-chemical properties or reactivity in the glycerol rich phase. Inaccurate prediction of the traces of glycerol in the \(\text{CO}_2 \) rich phase would not handicap the development of such biphase systems. Thus, in the following, the results with PR EoS and \(k_y \) fitted on \(x_{\text{CO}_2} \) only have been retained. The approach which privileges the vapor phase description could be proposed in the context of an application where an accurate calculation of the vapor phase composition is needed. However, as can be seen in Table 7, when a description for both phases simultaneously is needed the PSRK-UNIQUAC should be preferred (entry 3) because it gives acceptable \(\% \text{AAD} \) (18.4 and 57.2 for \(x_{\text{CO}_2} \) and \(y_{\text{glycerol}} \) respectively) although there is a loss of accuracy for the liquid phase in comparison to entry 1. Visual assessment of calculated and experimental \(\text{CO}_2 \) mole fractions in the glycerol rich phase can be done in Fig. 7(a), (c), (e) and (g), and in the \(\text{CO}_2 \) rich phase in Fig. 7(b), (d) and (f), at 40, 80, 120 and 200 °C. Among mixing rules based on EoS/O approach, it appears clearly that PSRK mixing rule with UNIQUAC activity model provides the best results in terms of both liquid and vapor compositions, followed by MHV2 mixing rule with UNIQUAC (entry 5), that gives worse results. Although the deviations obtained with PSRK-UNIQUAC are still rather high, this result confirms that these mixing rules are the most adequate to predict experimental behavior of such complex mixtures, as compared to classical vdW1 mixing rules. Essentially, the high values of deviations may be explained by the large difference of \(\text{CO}_2 \) and glycerol critical volumes (94 cm\(^3\) mol\(^{-1}\) and 264 cm\(^3\) mol\(^{-1}\), respectively). Indeed, the \(\text{CO}_2 \)-glycerol mixture could be classified as a size-asymmetric system, for which it has been shown that this kind of model is actually somewhat unsuitable [47], due to the difference between the combinatorial term of the activity coefficient model and the one of the equation of state. This difference increases as the difference in molecule size increases [47].

To better investigate the ability of the models to represent global experimental behavior of the liquid phase of the \(\text{CO}_2 \)-glycerol system on the wide range of temperature, it is interesting to consider variations of \(\% \text{AAD}x \) obtained with the different models with the temperature (Fig. 8) (Note: MHV2-UNIFAC is not considered because \(\% \text{AAD}x \) is very high, whatever the temperature).

Several tendencies can be observed from Figs. 7 and 8. Firstly, as previously pointed out, whatever the temperature, non-predictive models with fitted binary interaction parameters are the most suitable. Of course, this result was expected, considering the fact that for these models four coefficients are fitted to experimental data in order to minimize global average deviation. It is shown in Fig. 8 that deviations are higher at high temperature, where the experimental curves show a change in concavity and where experimental points are scarce.

Essentially, predictive models, i.e., models using UNIFAC in mixing rules, yielded poor representation of experimental results, particularly MHV2-UNIFAC (Table 7, entry 6). PSRK-UNIFAC approach is satisfactory at low temperature, but deviation sharply increases with temperature to reach about 200% at 200 °C (Fig. 8). Concerning this last model, this result was expected considering the fact that, for the functional groups of our database used to describe the \(\text{CO}_2 \)/glycerol system (i.e., \(\text{CO}_2 \), OH and \(\text{CH}_2 \) functional groups), binary interaction parameters within these groups are provided as temperature independent.

PSRK mixing rule was found here superior to MHV2, whatever the activity coefficient model, UNIFAC or UNIQUAC, chosen in the mixing rule. This result is somewhat surprising, because MHV2 mixing rule provides generally a better match of experimental results.

The thermodynamic behavior of \(\text{CO}_2 \)/glycerol system is obviously governed by self-interaction of glycerol. For such a system, an improvement in phase equilibrium modeling could be achieved by using advanced models based on association theories, such as SAFT (Statistical Associating Fluid Theory) or CPA (Cubic Plus Association) models. Although grounded on a more complex theoretical basis, these models have been proved to be particularly suitable for associating compounds [34].

4. Conclusions

In this work, the mutual solubility of \(\text{CO}_2 \) and glycerol has been studied at temperatures ranging from 40 °C to 200 °C and pressures up to 35.0 MPa. This has been done using the FT-IR technique which proved to give access to very low values of equilibrium concentrations with a good accuracy. Concerning the \(\text{CO}_2 \) rich phase, it was observed that the glycerol solubility in \(\text{CO}_2 \) was extremely low (in the range of \(10^{-5} \) in mole fraction) in the pressure and temperature domains investigated here. Conversely, the glycerol rich phase dissolved \(\text{CO}_2 \) at mole fractions up to 0.13. Negligible swelling of the glycerol rich phase has been observed, which indicates that glycerol behaves as a class I Gas Expanded Liquid (GXL)

