OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Exergetic balances and analysis in a Process Simulator: A way to enhance Process Energy Integration

Ghannadzadeh, Ali. Exergetic balances and analysis in a Process Simulator: A way to enhance Process Energy Integration. PhD, Institut National Polytechnique de Toulouse, 2013

[img] (Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://ethesis.inp-toulouse.fr/archive/00002116/


Energy issue is becoming increasingly crucial for industrial sector that consumes large quantities of utilities. Although the scientific world should continue to look for alternate sources of energy, a short-term solution would rather rely on a more rational use of energy. To face this challenge, exergy analysis appears a very efficient tool as it would enable to increase efficiency and reduce environmental impact of industrial processes. Unfortunately, contrary to enthalpy, this concept is rather difficult to handle and exergy analysis is rarely implemented in process simulators. In this context, the major objective of the study presented in this dissertation is to make exergy analysis more understandable by coupling it with the use of a process simulator and also to demonstrate the value of this approach for analysis of energy efficiency of processes and utilities. This dissertation presents a generic formulation for exergy of material streams that does not depend on the thermodynamic model, so that it could be easily implemented in a process simulator. The different contributions of exergy (thermal, mechanical and chemical) have been developed and new concept such as the maximal thermal and mechanical recovery potential has been introduced in order to pave the way for exergy analysis. The formulations of exergy balances on a real process are presented. For that purpose, the formulation of exergy for heat and work flux is developed. The formulation of exergy balances has been introduced for both design and retrofit situations and then a set of hints for the interpretation of this exergy balance has been given. Synthetic tables providing solutions to reduce irreversibilities and external losses have been introduced. Moreover, different kinds of exergy efficiency have been defined to provide a new criterion for the optimization of the process. A new structured methodology for exergy analysis is developed to overcome the limitations of existing methodologies. To make exergy analysis easier for any engineer, a first prototype has been developed to implement the calculation of exergy for the material streams in a process flowsheet modeled in ProSimPlus. Thanks to this prototype, exergy of each material stream appears in a synthesis table next to the traditional thermodynamic values such as the enthalpy. Finally, a case study on Natural Gas Liquids recovery process is presented to demonstrate the benefit of the exergy analysis for the improvement of existing processes. First, the exergy analysis permits to make an energy diagnosis of the process: it pinpoints the inefficiencies of the process which relies not only on irreversibilities but also on external exergy losses. Then, based upon respective values of internal and external losses and also thanks to the breaking down of exergy into it thermal, mechanical and chemical contributions, some technological solutions are suggested to propose a retrofit process. Finally, the exergy efficiency criteria enable to optimize the operating parameters of the process in order to improve its energy efficiency.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Joulia, Xavier and Thery, Raphaële
Deposited By: admin admin
Deposited On:03 Oct 2013 21:58

Repository Staff Only: item control page