Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 9445

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Analyzing feasibility of field measurements by Digital Image Stereo Correlation in restrictive conditions: Application to flexible work-piece vibrations during High Speed Machining

Faisabilité de la mesure de champs par stéréo corrélation d’images en conditions restrictives: Application aux vibrations de pièces minces en Usinage Grande Vitesse

Toufic WEHBE, PhD
Bureau Moyen-Orient
Agence universitaire de la Francophonie
Beyrouth - Liban

Gilles DESSEIN, full professor
Lionel ARNAUD, assistant professor
Ecole Nationale d’Ingénieurs de Tarbes
Tarbes - France
I. Context and goal

II. Digital Image Stereovision in machining

III. Machining tests and Measurements analysis method

IV. Conclusions and perspectives
I. Context and goal

Thin plates milling = high risk of chatter

- Weight reducing
 → thin plates
 → reduced stiffness compared to tool

- More and more resistant materials
 → Increased cutting forces

Results

- Broken tools
- Scraped pieces
- Polishing

Costs

Risks
Scientific motivation

I. Context and goal

TOOL VIBRATIONS
- No loss of material
- Constant characteristics
- No modes transitions

THIN PART VIBRATIONS
- Loss of material
- Nodes and antinodes
- Many modes transitions
 → Evolutionary behavior

… Scientists own deep knowledge

Complex scientific enigmas
I. Context and goal

Material removal problematic

Loss of information on finished part

Vibratory modes must be measured **during** machining

Punctual sensors do not see the whole part

Necessity of displacement field measurement during machining
II. Digital Image Stereovision in machining

Very high cutting frequencies → combination of 6 sensors

Limitations

Machining center access
Cameras snapping frequency: 5 images / second

Displacement fields only allow to study permanent vibrations
II. Digital Image Stereovision in machining

Stereo correlation measurement

![Diagram](image)
II. Digital Image Stereovision in machining

Stereo correlation measurement

- **Step 1:** Grey pattern painting
- **Step 2:** Sample framing
- **Step 3:** Sharpness searching
- **Step 4:** Cameras calibrating
- **Step 5:** Test measuring
- **Step 6:** Calculus parameters adjusting
- **Step 7:** Physical points processing

No works about setting phases (2 and 3) + reduced accessibility

-> *We developed a setting method*
II. Digital Image Stereovision in machining

Stereo correlation device setting parameters

Parameters to be adjusted
- Equipment choice
- Shutter time
- Objective
- Diaphragm
- Lighting device
- Angle between cameras
- Measurement distance
- Cameras spacing

Constraints
- Vibration frequency
- Machining center accessibility
- Poor ambient light
- Part’s horizontal framing
- Part’s vertical framing
- Parts sharpness
- Angle stereovision angle
 - . . .

Analysis work: cameras spacing impact on sample sharpness

Cameras spacing

- raises the Depth of Field (DOF), AND
- makes the D. o F. first plan cross the part

- **Parameter effet may reverse**
- **Interaction of all the parameters**
Analytical formalizing of constraints

« ... The grey pattern must sharply appears during the whole machining... »

\[FQ > FU' \]

\[
\frac{0.35 \times 2 \times f^2}{F_{number} \times C_{confusion}} \times ((0.5 \times B)^2 + A^2) - \frac{0.5^2 \times L \times B - (\Delta - \delta) \times A}{((0.5 \times B)^2 + A^2)^{1/2}} > 0
\]
II. Digital Image Stereovision in machining

Problem synthesis

Machining center accessibility

\[A > A_{\text{min}} \]

Cameras spacing

\[B < B_{\text{max}} \]

Stereo correlation angles

\[2 \cdot A \cdot \tan \alpha_{\text{min}} - B \leq 0 \]

\[B - 2 \cdot A \cdot \tan \alpha_{\text{max}} \leq 0 \]

Right border framing

\[
\frac{(0.5 \cdot B)^2 + A^2 + (\Delta - \delta) \cdot A - 0.5^2 \cdot L \cdot B)^{\text{horiz}}}{((0.5 \cdot B)^2 + A^2)^{1/2}} - 0.5^2 \cdot B \cdot L \cdot A^{\text{horiz}} - 0.5^2 \cdot B \cdot A \leq 0
\]

Left border framing

\[
\frac{[A^3 + (0.5 \cdot B)^2 + A + (\Delta - \delta) \cdot (A^2 - (0.5 \cdot B)^2) + 0.5^2 \cdot B \cdot L \cdot A]^{\text{horiz}}}{(0.5 \cdot B)^2 + A^2} - 0.5^2 \cdot B \cdot A \leq 0
\]

Vertical framing

\[
\frac{(0.5 \cdot B)^2 + A^2 + (\Delta - \delta) \cdot A - 0.5^2 \cdot L \cdot B)^{\text{vertic}}}{((0.5 \cdot B)^2 + A^2)^{1/2}} - 0.5^2 \cdot B \cdot L \cdot A^{\text{vertic}} - 0.5^2 \cdot B \cdot A \leq 0
\]

Right border sharpness

\[
\frac{0.35 \cdot 2 \cdot \frac{f^2}{r_{\text{stop}}^{\text{confusion}}}}{(0.5 \cdot B)^2 + A^2} - \frac{0.5^2 \cdot L \cdot B - (\Delta - \delta) \cdot A}{((0.5 \cdot B)^2 + A^2)^{1/2}} > 0
\]

Left border sharpness

\[
\frac{0.65 \cdot 2 \cdot \frac{f^2}{r_{\text{stop}}^{\text{confusion}}}}{(0.5 \cdot B)^2 + A^2} - \frac{(\Delta + \delta) \cdot A + 0.5^2 \cdot L \cdot B}{((0.5 \cdot B)^2 + A^2)^{1/2}} > 0
\]

\[\{ A ; B ; f ; F_{\text{stop}} ; \Delta ; \delta ; L ; l \} \]

To be chosen by the scientist
II. Digital Image Stereovision in machining

Graphical solution chart

Includes the measurement technique, the sensors characteristics, the lighting, the part dimensions, the machine, ...
II. Digital Image Stereovision in machining

Method synthesis

- **Interesting benefits**
 - Optimal settings choice **before** tests
 - A complex experimental **problem simplified**
 - **Fast** chart plotting
 - Can include human factor, cameras dissymetry, …
 - May be **transposed** to other process
 - Setting time and material cost **reduction**

- **Limitations**
 - Needs to consider ambient light « in situ » to choose diaphragm aperture
III. Machining tests and Measurements analysis method

Measurements during radial milling tests

Repetition tests with 8 snaps / test

$Ap = 6 \text{ mm}$

$N = 10900 \text{ rot/ min}$
III. Machining tests and Measurements analysis method

Measurements analysis method

Modal analysis

Interpolation with polynomials

\[f_1(\alpha_1, x, y) = \alpha_1 \cdot (a_{1,9} x^9 y^9 + \cdots + a_{1,0} x^0 y^0) \]
\[f_2(\alpha_2, x, y) = \alpha_2 \cdot (a_{2,9} x^9 y^9 + \cdots + a_{2,0} x^0 y^0) \]
\[\cdots \]
\[f_6(\alpha_6, x, y) = \alpha_6 \cdot (a_{6,13} x^{13} y^{13} + \cdots + a_{6,0} x^0 y^0) \]

Modes weights

Measurement of cutting force

\[f_0(\alpha_0, x, y)_{\text{outside}} = \alpha_0 \cdot (a_{0,9} x^9 y^9 + \cdots + a_{0,0} x^0 y^0) \]

Modal shapes + static deflection

\[S(x, y)_{\text{outside}} = \sum_{i=1}^{6} f_i(\alpha_i, x, y) + f_0(\alpha_0, x, y)_{\text{outside}} \]

Interpolation of Measured shape

20 N < F < 30 N
III. Machining tests and Measurements analysis method

Some analysis results

- Part's structural modes of the free part (FEM)
- Vibratory shapes from cameras
- Vibratory shapes from laser vibrometer
- Mean cutting force
- Animated modes

Dissimilarities

- Frequencies
- Shape

Not vibratory shapes

Mean cutting force

Similarity

Modes weights
Conclusions

- Better knowledge of the stereocorrelation for machining tests
 - Setting phase analysis
 - Analytical formalization
 - Feasibility charts
 - Important novel results for measurement

- Specific analysis method developed to investigate real vibration modes
 - Surface roughness doesn’t give all the elements
 - Displacement fields helped to find differences between supposed and real modes
Perspectives

- Setting Islands for stereo correlation
 - More experimental validations of setting islands
 - Transposal to 3D parts

- High speed measurements
 - Many snaps at the cutting tooth scale
 - Finished surface roughness simulation

- Take into account the tool presence
 - Precisely identify tool contact evolution
 - Finite Elements Models with tool presence

Future cooperation in Lebanon ? ? ?
Call for abstracts: Beirut Energy Forum
26 – 27 September 2013

bef@beirutenergyforum.com
http://www.beirutenergyforum.com/

Toufic.wehbe@auf.org
http://www.auf.org/bureau-moyen-orient/
. Merci pour votre attention .

Dr.toufic.wehbe@gmail.com