OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Efficient large electromagnetic simulation based on hybrid TLM and modal approach on grid computing and supercomputer

Alexandru, Mihai. Efficient large electromagnetic simulation based on hybrid TLM and modal approach on grid computing and supercomputer. PhD, Institut National Polytechnique de Toulouse, 2012

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
7MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002231/

Abstract

In the context of Information Communications Technology (ICT), the major challenge is to create systems increasingly small, boarding more and more intelligence, hardware and software, including complex communicating architectures. This requires robust design methodologies to reduce the development cycle and prototyping phase. Thus, the design and optimization of physical layer communication is paramount. The complexity of these systems makes them difficult to optimize, because of the explosion in the number of unknown parameters. The methods and tools developed in past years will be eventually inadequate to address problems that lie ahead. Communicating objects will be very often integrated into cluttered environments with all kinds of metal structures and dielectric larger or smaller sizes compared to the wavelength. The designer must anticipate the presence of such barriers in the propagation channel to establish properly link budgets and an optimal design of the communicating object. For example, the wave propagation in an airplane cabin from sensors or even an antenna, towards the cockpit is greatly affected by the presence of the metal structure of the seats inside the cabin or even the passengers. So, we must absolutely take into account this perturbation to predict correctly the power balance between the antenna and a possible receiver. More generally, this topic will address the theoretical and computational electromagnetics in order to propose an implementation of informatics tools for the rigorous calculation of electromagnetic scattering inside very large structures or radiation antenna placed near oversized objects. This calculation involves the numerical solution of very large systems inaccessible by traditional resources. The solution will be based on grid computing and supercomputers. Electromagnetic modeling of oversized structures by means of different numerical methods, using new resources (hardware and software) to realize yet more performant calculations, is the aim of this work. The numerical modeling is based on a hybrid approach which combines Transmission-Line Matrix (TLM) and the mode matching methods. The former is applied to homogeneous volumes while the latter is used to describe complex planar structures. In order to accelerate the simulation, a parallel implementation of the TLM algorithm in the context of distributed computing paradigm is proposed. The subdomain of the structure which is discretized upon TLM is divided into several parts called tasks, each one being computed in parallel by different processors. To achieve this, the tasks communicate between them during the simulation by a message passing library. An extension of the modal approach to various modes has been developped by increasing the complexity of the planar structures. The results prove the benefits of the combined grid computing and hybrid approach to solve electrically large structures, by matching the size of the problem with the number of computing resources used. The study highlights the role of parallelization scheme, cluster versus grid, with respect to the size of the problem and its repartition. Moreover, a prediction model for the computing performances on grid, based on a hybrid approach that combines a historic-based prediction and an application profile-based prediction, has been developped. The predicted values are in good agreement with the measured values. The analysis of the simulation performances has allowed to extract practical rules for the estimation of the required resources for a given problem. Using all these tools, the propagation of the electromagnetic field inside a complex oversized structure such an airplane cabin, has been performed on grid and also on a supercomputer. The advantages and disadvantages of the two environments are discussed.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Aubert, Herve
Statistics:download
Deposited By: admin admin
Deposited On:24 May 2013 21:58

Repository Staff Only: item control page