Micromechanical modeling of brittle damage in composite materials: primary anisotropy, induced anisotropy and opening-closure effects

H. Welemane, C. Goidescu, O. Pantalé, F. Barelli, O. Dalverny

University of Toulouse INP/ National School of Engineers of Tarbes (France)
Engineering Production Laboratory
Various degradation mechanisms

- Matrix cracking in SiC-SiC [Guillaumat 94]
- Fiber-matrix debonding in carbon-epoxy [Aussedat-Yahia 97]
- Fiber breakage in glass-epoxy [François 04]
DAMAGE IN LAMINATED COMPOSITES

- Influence on the macroscopic behavior:
 - non linearity
 - degradation of elastic properties
 - induced anisotropy
 - unilateral effect

Carbon-epoxy [Goidescu 11]
DAMAGE IN LAMINATED COMPOSITES

- Influence on the macroscopic behavior:
 - non linearity
 - degradation of elastic properties
 - induced anisotropy
 - unilateral effect

Carbon-epoxy [Moffat 94]

SiC-SiC [Gasser 94]
CDM MODELING APPROACH

Thermodynamic of irreversible processes

1. Damage variables
2. Thermodynamic potential
3. Damage evolution law
CDM MODELING APPROACH

Thermodynamic of irreversible processes
- Micromechanics-based formulation

1. **Damage variables**
2. **Thermodynamic potential**
3. **Damage evolution law**

- rigorous, physical meaning
- arbitrary microcracks orientation
- interactions between:
 - initial and induced anisotropies
 - opening-closure effects

\[E(P) = \int_\nu \varepsilon \, dV \]
Assumptions

- Small transformations, rate-independent and isothermal conditions
- 2D framework (fracture mechanics solutions)
- Initial orthotropic media
- Dilute concentration, no interaction
- Flat microcracks (unit normal \mathbf{n}), open or closed (no friction)

General framework

- Damage variables
- Thermodynamic potential – State laws
- Damage evolution law

RVE = square cell area

 Virgin material

$$A = e_1 \otimes e_1, \quad C^0$$

 Microcracked material
CDM MODELING APPROACH

1 Damage variables

Discrete description

- Internal variables = damage densities d_i of N families of parallel microcracks
- Orientations n_i regularly spaced

$$d = (d_i)_{i=1,N}$$
CDM MODELING APPROACH

Thermodynamic potential

Micromechanical direct approach – Goidescu et al. 12

- Extension of works by:
 - Andrieux et al. 86 (anisotropic context)
 - Gruescu 04 (closure effects)
- Based on jump displacements
 \[\mathbf{u} = \mathbf{u}^+ - \mathbf{u}^- = [u_n] \mathbf{n} + [u_t] \mathbf{t} \]

- Formulation in strain (free energy):
 \[W(\mathbf{E}, \beta, \gamma) \]
 - Open state: \(\beta \neq 0 \)
 - Closed state: \(\beta = 0 \)

\[\beta = \mathcal{N} \int_{\omega} [u_n] dx \] (opening)
\[\gamma = \mathcal{N} \int_{\omega} [u_t] dx \] (sliding)
2 Thermodynamic potential

Expression of the free energy

\[
W = W_0 + \sum_{i=1}^{N} d_i
\]

\[
= c_1^{(i)} tr^2 E + c_2^{(i)} tr^2 (E \cdot A) + c_3^{(i)} tr E tr(E \cdot A)
+ c_4^{(i)} tr^2 (E \cdot n_i \otimes n_i) + c_5^{(i)} tr E tr(E \cdot n_i \otimes n_i) + c_6^{(i)} tr(E \cdot E \cdot n_i \otimes n_i)
+ c_7^{(i)} tr E tr(E \cdot n_i \otimes n_i \cdot A) + c_8^{(i)} tr(E \cdot A) tr(E \cdot n_i \otimes n_i)
+ c_9^{(i)} tr(E \cdot A) tr(E \cdot n_i \otimes n_i \cdot A) + c_{10}^{(i)} tr(E \cdot n_i \otimes n_i) tr(E \cdot n_i \otimes n_i \cdot A)
\]

with \(\{c_p^{(i)}(C^0, n_i, A)\}_{p=1,10} \)

- Closed-form expression accounting for interaction between initial and induced anisotropies
 - « isotropic » coupling (preserves initial orthotropy)
 - weak anisotropic coupling (similar to isotropic context)
 - strong anisotropic coupling
2 Thermodynamic potential

Unilateral effects

✓ open state: \(g(E, n_i, A) > 0 \) \(\Rightarrow \) \(\left\{ c_p^{(i)}(C^0, n_i, A) \right\}_{p=1,10} = \left\{ c_p^{\text{open}}(C^0, n_i, A) \right\}_{p=1,10} \)

✓ closed state: \(g(E, n_i, A) \leq 0 \) \(\Rightarrow \) \(\left\{ c_p^{(i)}(C^0, n_i, A) \right\}_{p=1,10} = \left\{ c_p^{\text{clos}}(C^0, n_i, A) \right\}_{p=1,10} \)

opening-closure criterion \((\beta=0) \):

\[
g(E, n_i, A) = \eta_1 (n_i \cdot E \cdot n_i) + \eta_2 tr(E) + \eta_3 tr(E \cdot A) + \eta_4 tr(E \cdot n_i \otimes n_i \cdot A)
\]

with \(\left\{ \eta_p(C^0, n_i, A) \right\}_{p=1,4} \)

- Mathematical consistence: \(W \) of class \(C^1 \)
CDM MODELING APPROACH

3 Damage evolution law

Standard framework

- Systematic satisfaction of the 2nd principle of thermodynamics
- Dissipation potential (Marigo 85):

$$\mathcal{D}(\dot{d}_i, d_i) = \mathcal{G}(d_i) \dot{d}_i = \Phi_i$$

material strength damage rate

$$\mathcal{G}(d_i) = k_0 (1 + \eta d_i)$$

$$\dot{d}_i = \begin{cases} 0, & \text{si} \ f(F^{d_i}) = F^{d_i} - \mathcal{G}(d_i) \leq 0, \dot{f} < 0 \\ \frac{\dot{F}_{d_i}}{k_0 \eta}, & \text{si} \ f(F^{d_i}) = 0, \dot{f} = 0 \end{cases}$$

How? When?
ELASTIC PROPERTIES

Elongation and volumetric moduli

- one family of microcracks along principal axis

\[
L(m) = m \otimes m : C : m \otimes m
\]

\[
\kappa(m) = I : C : m \otimes m
\]

- « isotropic-like » effect (open and closed states)
- recovery mode identical to isotropic context (Welemane 02)

SiC-SiC [Aubard 92]

- virgin state (orthotropic)
- open state
- closed state

H. Welemane ESMC-2012
Elongation and volumetric moduli

- one family of microcracks with arbitrary orientation

\[L(m) = m \otimes m : C : m \otimes m \]

\[\kappa(m) = I : C : m \otimes m \]

- strong anisotropic coupling (open and closed states)
- complex recovery mode
Influence of initial orthotropy

- stress-strain response
Influence of initial orthotropy

- density distribution

\[d = (d_i)_{i=1,N} \]
Influence of unilateral effects

- Dissymetry between tension and compression
Influence of unilateral effects

opening-closure domains ($\delta=0^\circ$)

Elastic properties
Dissipative behavior

PREDICTIVE ABILITY – DISSIPATIVE BEHAVIOR
CONCLUSION AND PERSPECTIVES

- Micromechanics-based model of brittle damage in 2D-orthotropic materials
- Rigorous approach
 - Verification of mathematical and thermodynamical principles
- Account of main features of microcracking
 - interaction of initial and induced anisotropy
 - opening-closure effects for arbitrarily oriented microcracks
- More complete validation on experimental results
- Account of other dissipative mechanisms: dissipative sliding (closed microcracks), viscosity, plasticity
Thanks for your attention!

H. Welemane, C. Goidescu, O. Pantalé, F. Barelli, O. Dalverny