OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

JUMPSAT: Qualifying three equipments in one Cubesat mission

Lucas, William and Rouanne-Labe, Anne and Grave, Julien and Peille, Philippe and Lizy-Destrez, Stéphanie JUMPSAT: Qualifying three equipments in one Cubesat mission. (2013) In: 2nd IAA Conference On University Satellite Missions And Cubesat Workshop, 03-09 Feb 2013, Rome, Italy .

[img]
Preview
(Document in English)

PDF ( Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Abstract

We work on a student 3U Cubesat mission, called JUMPSAT, expected for 2017. This is a collaborative project involving both institutions (CNES, ONERA) and schools (ISAE, TELECOM Bretagne). The different equipments to qualify are the Supaero Star Tracker, which measures stars’ luminosity to infer the satellite’s attitude, a detector for particles trapped in the Earth magnetic field designed by the ONERA, and the AOCS. Uplink and Downlink communications will be provided during the mission by the HETE Primary Ground Stations. JUMPSAT is the first Cubesat which needs a three axis attitude control, which involves an innovative mission analysis, to overcome all these constraints. The mission analysis deals with the orbit’s determination, the Cubesat’s structure, the power strategy, and the visibility balance. The particles detector is the only constraint for the altitude of the satellite: we can get meaningful data only at altitudes higher than 700 km. Moreover, the most interesting zones are South Atlantic and poles. But a circular orbit with this altitude does not respect the LOS (French space act).The structure of the Cubesat is also hard to define. To get information from the satellite, we need an antenna, and an attitude and orbital control system to point the antenna at the ground station and the Star Tracker at the stars. Solar Panels cannot be opened out because of the micro elements that could be settled on the particles detector. However, fixed solar panels are not very efficient to recharge batteries. The power balance shows critical problems: both attitude control system and the Star Tracker consume a lot, and cannot work at the same time during the whole orbit. However, all the components are linked: the Star Tracker is not efficient if the satellite attitude is not stabilized; the antenna functioning must be synchronized with visibilities by the ground station. Anyway, the visibility balance stresses the point that a ground station at Toulouse would be particularly welcome. We need also to take into account phenomena of eclipse and satellite drift. To conclude, our mission analysis is deeply constrained by the equipments we want to qualify. Our task is to find the optimal orbit, suggest a power strategy considering the orbital constraints and components’ physical parameters, and to study the visibility balance. It is a real challenge in terms of power consumption, architecture, orbital strategy for such a small satellite.

Item Type:Conference or Workshop Item (Paper)
Audience (conference):International conference proceedings
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Laboratory name:
Statistics:download
Deposited By: Lizy-Destrez Stéphanie
Deposited On:22 Apr 2013 12:37

Repository Staff Only: item control page