OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Electromagnetic modeling of large and non-uniform planar array structures using Scale-Changing Technique (SCT)

Rashid, Aamir. Electromagnetic modeling of large and non-uniform planar array structures using Scale-Changing Technique (SCT). PhD, Institut National Polytechnique de Toulouse, 2010

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00001460/

Abstract

Large sized planar structures are increasingly being employed in satellite and radar applications. Two major kinds of such structures i.e. FSS and Reflectarrays are particularly the hottest domains of RF design. But due to their large electrical size and complex cellular patterns, full-wave analysis of these structures require enormous amount of memory and processing requirements. Therefore conventional techniques based on linear meshing either fail to simulate such structures or require resources not available to a common antenna designer. An indigenous technique called Scale-changing Technique addresses this problem by partitioning the cellular array geometry in numerous nested domains defined at different scale-levels in the array plane. Multi-modal networks, called Scale-changing Networks (SCN), are then computed to model the electromagnetic interaction between any two successive partitions by Method of Moments based integral equation technique. The cascade of these networks allows the computation of the equivalent surface impedance matrix of the complete array which in turn can be utilized to compute far-field scattering patterns. Since the computation of scale-changing networks is mutually independent, execution times can be reduced significantly by using multiple processing units. Moreover any single change in the cellular geometry would require the recalculation of only two SCNs and not the entire structure. This feature makes the SCT a very powerful design and optimization tool. Full-wave analysis of both uniform and nonuniform planar structures has successfully been performed under horn antenna excitation in reasonable amount of time employing normal PC resources.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution: Université de Toulouse > Institut National Polytechnique de Toulouse - INPT
Laboratory name:
Research Director:
Aubert, Hervé
Statistics:download
Deposited By: admin admin
Deposited On:21 Nov 2012 13:07

Repository Staff Only: item control page