OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria

Lyautey, Emilie and Cournet, Amandine and Morin, Soizic and Boulêtreau, Stéphanie and Etcheverry, Luc and Charcosset, Jean-Yves and Delmas, François and Bergel, Alain and Garabétian, Frédéric Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria. (2011) Applied and Environmental Microbiology, vol. 77 (n° 15). pp. 5394-5401 . ISSN 0099-2240

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
393kB

Official URL: http://dx.doi.org/10.1128/AEM.00500-11

Abstract

Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from −0.36 to −0.76 V/SCE, and peak amplitudes ranging from −9.5 to −19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.

Item Type:Article
Additional Information:Thanks to American Society for Microbiology editor. The definitive version is available at http://aem.asm.org The original PDF of the article can be found at : http://aem.asm.org/content/77/15/5394.abstract
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT
Université de Toulouse > Université Paul Sabatier-Toulouse III - UPS
French research institutions > Institut national de recherche en sciences et technologies pour l’environnement et l’agriculture - CEMAGREF
Other partners > Université Montesquieu - Bordeaux 4 (FRANCE)
Laboratory name:
Statistics:download
Deposited By: Audrey LEFEVRE
Deposited On:02 Jul 2012 11:51

Repository Staff Only: item control page