OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Lead Uptake, Toxicity, and Detoxification in Plants

Pourrut, Bertrand and Shahid, Muhammad and Dumat, Camille and Winterton, Peter and Pinelli, Eric Lead Uptake, Toxicity, and Detoxification in Plants. (2011) Reviews of Environmental Contamination and Toxicology, vol. 213 . pp. 113-136. ISSN 0179-5953

[img](Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
449Kb

Official URL: http://dx.doi.org/10.1007/978-1-4419-9860-6_4

Abstract

Lead has gained considerable attention as a persistent toxic pollutant of concern, partly because it has been prominent in the debate concerning the growing anthropogenic pressure on the environment. The purpose of this review is to describe how plants take lead up and to link such uptake to the ecotoxicity of lead in plants. Moreover, we address the mechanisms by which plants or plant systems detoxify lead. Lead has many interesting physico-chemical properties that make it a very useful heavy metal. Indeed, lead has been used by people since the dawn of civilization. Industrialization, urbanization, mining, and many other anthropogenic activities have resulted in the redistribution of lead from the earth’s crust to the soil and to the environment. Lead forms various complexes with soil components, and only a small fraction of the lead present as these complexes in the soil solution are phytoavailable. Despite its lack of essential function in plants, lead is absorbed by them mainly through the roots from soil solution and thereby may enter the food chain. The absorption of lead by roots occurs via the apoplastic pathway or via Ca2+-permeable channels. The behavior of lead in soil, and uptake by plants, is controlled by its speciation and by the soil pH, soil particle size, cation-exchange capacity, root surface area, root exudation, and degree of mycorrhizal transpiration. After uptake, lead primarily accumulates in root cells, because of the blockage by Casparian strips within the endodermis. Lead is also trapped by the negative charges that exist on roots’ cell walls. Excessive lead accumulation in plant tissue impairs various morphological, physiological, and biochemical functions in plants, either directly or indirectly, and induces a range of deleterious effects. It causes phytotoxicity by changing cell membrane permeability, by reacting with active groups of different enzymes involved in plant metabolism and by reacting with the phosphate groups of ADP or ATP, and by replacing essential ions. Lead toxicity causes inhibition of ATP production, Lead Uptake, Toxicity, and Detoxification in Plants 131 lipid peroxidation, and DNA damage by over production of ROS. In addition, lead strongly inhibits seed germination, root elongation, seedling development, plant growth, transpiration, chlorophyll production, and water and protein content. The negative effects that lead has on plant vegetative growth mainly result from the following factors: distortion of chloroplast ultrastructure, obstructed electron transport, inhibition of Calvin cycle enzymes, impaired uptake of essential elements, such as Mg and Fe, and induced deficiency of CO2 resulting from stomatal closure. Under lead stress, plants possess several defense strategies to cope with lead toxicity. Such strategies include reduced uptake into the cell; sequestration of lead into vacuoles by the formation of complexes; binding of lead by phytochelatins, glutathione, and amino acids; and synthesis of osmolytes. In addition, activation of various antioxidants to combat increased production of lead-induced ROS constitutes a secondary defense system.

Item Type:Article
Additional Information:Thanks to Springer editor. The definitive version is available at http://www.springerlink.com/content/w626256554732q56/?MUD=MP
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT
Université de Toulouse > Université Paul Sabatier-Toulouse III - UPS
Laboratory name:
Statistics:download
Deposited By:Nadia Kelmouss

Repository Staff Only: item control page