One-Dimensional Acoustic Models of Horns and Comparison with Measurements

Thomas Hélie\(^1\), Thomas Hézard\(^1\), Rémi Mignot\(^2\), Denis Matignon\(^3\)
\(^1\) IRCAM-CNRS UMR 9912, Sciences et Technologies de la Musique et du Son - UPMC, 1 place Igor Stravinsky, 75004 Paris, France. [thomas.helie, thomas.hezard]\@ircam.fr
\(^2\) Institut Langevin, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France. remi.mignot\@espci.fr
\(^3\) Université de Toulouse, ISAE 10, av. E. Belin. BP 54032, 31055 Toulouse Cedex 4, France. denis.matignon\@isae.fr

Summary
Due to the simple properties of plane waves, non lossy straight pipes and their concatenation have been extensively used to derive digital waveguide synthesis and to compute acoustic immittances (input impedance, transmittance, etc) of wind instruments. This paper focuses on some possible refinements of such 1D wave propagation models, especially in the case of smooth horns. Four key points are examined: a refined curvilinear 1D horn equation, the smooth connection of constant-flared acoustic pipes, a radiation model consistent with spherical wavefronts, the effect of visco-thermal losses at the wall. They allow the definition of a complete model, from which a standard matrix formalism is recovered, as for plane or spherical waves. The comparison with measurements shows that each of these refinements is relevant, making one-dimensional models useful and efficient even for the quite sensitive case of brass instruments. Moreover, compared to the standard descriptions based on straight or conical pipes, the model proposed here gives accurate descriptions with only a few segments.

PACS no. 43.20.Mv, 43.75.Ef, 43.75.Fg

1. Introduction
For many wind instruments, one-dimensional (1D) models of acoustic bores are accurate enough for sound synthesis issues and for computing immittances (input impedance, transmittance, etc). Thus, descriptions based on planar or spherical waves propagating in piecewise straight or conical pipes have been extensively used [1, 2, 3, 4, 5, 6], including for the vocal tract [7, 8]. They allow the derivation of closed-form formulae from the bore profile, using a transfer matrix method and a radiation impedance load (see e.g. [9] for standard models and [10] for some comparison with measurements). However, discontinuous approximations of profiles involve impulse responses composed of pulse trains of Dirac measures, which are unrealistic for smooth bores. Similarly, continuous but non smooth approximations based on conical segments involve discontinuous pulse trains of damped exponentials. In the case of smooth flared horns, many segments are needed to weaken such artifacts.

This paper addresses the issue of improving accuracy, while preserving such 1D models and piecewise decompositions. For refinement, four points are examined:
(1) a horn equation based on an isobar map rectification;
(2) the smooth connection of constant-flared pipes;
(3) a radiation model which is consistent with (1);
(4) the effect of visco-thermal losses at the wall.
This allows the recovery of a transfer matrix method which is adapted to the computation of immittances of bores with a smooth profile. The complete model yields accurate results with only a few segments. Each of the four “ingredients” proves relevant. Moreover, as for plane waves in straight pipes, it still makes definitions of travelling waves and of digital waveguide-like structures possible.

The paper is organized as follows. Sections 2 to 5 are dedicated to the study of each ingredient, that is, the influence of: the choice of the wave-shape assumption in the horn equation (§2), the geometric regularity at junctions in piecewise segment modelling (§3), the radiation impedance (§4) and visco-thermal losses (§5). These studies are illustrated on the academic horn profile detailed in the Appendix. Section 6 presents results on a trombone bell, the profile and the input impedance of which have been measured.

2. Ingredient 1: horn equation with curvilinear abscissa
2.1. Brief history summary and context
The first 1D model of the lossless acoustic propagation in axisymmetric pipes is due to [11, 12]. It is usually called
“horn equation” or “Webster equation” [13] and has been extensively investigated, witnessed in e.g. [14]. Its first version is based on planar waves but this assumption has been periodically revised. So, to preserve the orthogonality of the rigid motionless wall and wavefronts, Lambert [15] and Weibel [16] contest derivations based on planar waves and postulate spherical ones. The quasi-sphericity was experimentally confirmed for a horn profile in the low frequency range by Benade and Janson [17]. Later, Putland [18] pointed out that every one-parameter acoustic field obeys a Webster equation for particular coordinates. He also found that only planar, cylindrical and spherical waves could correspond to exact models. A similar result proved in [19, 20] states that the only static axisymmetric isobar maps on which waves can propagate correspond to these waves and to some modal maps. In spite of this limitation, some refined 1D models have still been looked for because of their simplicity (see e.g. [21, 22]): they make the computation of impedances easy and the frequency range that is not perturbed by transverse modes [23] is usually sufficiently large to study many wind musical instruments.

2.2. Remarks on the consistency between the geometry of isobars and the 1D horn equations

In this paper, we consider the model proposed in [19, 20]. This choice is motivated by its ability to regenerate several exact models and its consistency with the following statement. On the one hand, the geometric results and the observations compiled below are standard.

Property 1 (Isobars in axisymmetric waveguides)

For conservative propagation in axisymmetric pipes, some basic geometric properties of isobars are that:

(i) plane waves propagate in straight pipes (they are governed by \(\partial_x^2 - \frac{1}{c^2} \partial_t^2 \)) where the space variable z denotes the axial abscissa;

(ii) spherical waves propagate in conical pipes (they are governed by \(\partial_r^2 + \frac{2}{r} \partial_r - \frac{1}{c^2} \partial_t^2 \)) where r denotes the spherical abscissa;

(iii) isobars are orthogonal to the wall (except for null gradient of pressure, see [19, p.33] for a discussion);

(iv) according to [17], quasi-spherical isobars can be experimentally observed in the low frequency range;

(v) except for plane waves (i), spherical waves (ii) and a few other isolated cases, isobar profiles are generally time-varying (see [20, § II.C.]).

On the other hand, following [18], every 1D conservative propagation obeys a Webster horn equation, that is,

\[
\left(\frac{1}{A(s)} \partial_s \left(A(s) \partial_s \right) - \frac{1}{c^2} \partial_t^2 \right) p(s, t) = 0, \tag{1}
\]

where \(s \) and \(s \rightarrow A(s) \) denotes a space variable and a cross-section area, respectively.

However, the first models mentioned in § 2.1 are not consistent with all the properties 1 (i-v). More precisely, the original model [11, 12, 13] corresponds to \(s = z \) and

\[
A = \pi R^2 \text{ where } z \mapsto R(z) \text{ denotes the local radius of the bore profile. The model is often written w.r.t. } R \text{ as }
\]

\[
\left(\partial_z^2 + \frac{2}{R} \partial_z - \frac{1}{c^2} \partial_t^2 \right) p(z, t) = 0. \tag{2}
\]

or

\[
\left(\partial_z^2 - \frac{R''(z)}{R(z)} \right) \frac{1}{c^2} \partial_t^2 \right) \left[R(z) p(z, t) \right] = 0. \tag{3}
\]

It corresponds to assuming plane waves and only restores property 1 (i). Models based on spherical wavefronts [15, 16] (s is a spherical abscissa and \(A \) describes the area of portions of spheres) or on ellipsoidal coordinates [21] restore properties 1 (i-v) but are not consistent with (v).

2.3. Derivation of a 1D model consistent with properties 1(i-v)

2.3.1. Step 1: isobar wave equation

The first step consists in writing the wave equation for axisymmetric problems \(\left[\partial_r^2 - \frac{1}{r} \partial_r + \partial_t^2 - \frac{1}{c^2} \partial_t^2 \right] P(z, r, t) = 0 \) in a rectified isobar map. Formally, this is achieved by using a coordinate transformation \(z = f(s, u, t), r = g(s, u, t) \) such that \(P(f(s, u, t), g(s, u, t), t) = p(s, t) \) does not de-
pend on \(u \): the space variable \(s \) is chosen such that it indexes isobars \(I_s \) (cf. Figure 1a). This leads to

\[
\alpha \partial_s^2 + \beta \partial_s + \gamma \partial_s \partial_t - \frac{1}{c_s^2} \partial_t^2 \bar{p}(s, t) = 0.
\]

(4)

where \(\alpha, \beta, \gamma \) are functions of \((s, u, t)\).

Remark 1 (Isobar map parameterizations) Without loss of generality, the change of coordinates can be chosen such that: (i) \((s, u)\) are orthogonal and directly oriented \(\arg(\partial_s f + i \partial_u g) = \pi/2\); (ii) \(f(s, -u, t) = f(s, u, t)\), \(g(s, -u, t) = -g(s, u, t)\) (symmetry w.r.t. the \((Oz)\) axis, given by \(u = 0 \)); (iii) \(u = 1 \) maps to the (motionless) bore profile described by some known (time-invariant) functions \(f(s, u = 1, t) = F(s), g(s, u = 1, t) = G(s) \).

According to the general formula given in [19, 20], for the choice of remark 1(i), coefficients are

\[
\alpha = \frac{1 - \frac{\partial u^2}{\partial s^2}}{\sigma_s^2}, \quad \gamma = \frac{\partial u}{\sigma_s},
\]

\[
\beta = \frac{\sin \varphi}{\sigma_s} + \frac{1 - \frac{\partial u^2}{\partial s^2}}{\sigma_s^2} \left(\frac{\sigma_s \partial_u \varphi}{\sigma_u} - \partial_u \ln \sigma_s \right)
\]

\[
-\frac{1}{\alpha} \partial_s \frac{\partial u^2}{\partial s^2} - \frac{\partial u}{\sigma_s} + \frac{1}{\sigma_s^2} \partial_u \frac{\partial u}{\partial s}
\]

with \(\sigma_s = \sqrt{(\partial_s f)^2 + (\partial_s g)^2}, \sigma_u = \sqrt{(\partial_u f)^2 + (\partial_u g)^2} \) (vector norms), \(\varphi = \arg(\partial_s f + i \partial_u g) \) (angle) and \(\xi_s = \frac{1}{\alpha}[-\partial_s f \sin \varphi + \partial_s g \cos \varphi] \) (Mach numbers).

2.3.2. Step 2: ideal motionless walls and quasi-spherical isobars

Exact derivations based on remark 1(iii) show that, on the wall \((u = 1, z = F(s), r = G(s))\), coefficients in (4) are \(\alpha(s, u, 1, t) = 1/(F'(s)^2 + G'(s)^2), \gamma(s, u, 1, t) = 0\) and

\[
\beta(s, u, 1, t) = \partial_t \ln \left| \frac{G(s)}{F(s)} \right| + \partial_t \ln \left| \partial_u g(s.u = 1, t) \right|.
\]

(5)

To obtain a 1D wave equation, an approximation is assumed in order to decouple the problems of the isobar “shapes” and “values”. The simplest one that is consistent with properties 1(i-v) and that gives a closed formula for the coupling quantity \(\partial_u g(s, u = 1, t) \) is the following one.

Hypothesis 1 (Isobar quasi-sphericity at order 2) Denote \(\rho'(s) \) the radius of the spherical isobar approximation (orthogonal to the wall) and \(\rho(s, u, t) \) the length between the center of this sphere \(S_{\rho} \) and the isobar \(I_s \) at \(u \) (see Figure 1b). The relative deviation \(\zeta = \rho' - 1 \) satisfies

\[
\partial_u^2 \zeta(s, u = 1, t) = 0 \quad \text{for} \quad k = 0 \quad \text{(contact) and} \quad k = 1 \quad \text{(tangency of} \quad S_{\rho} \quad \text{and} \quad I_s). \]

This is still assumed at order \(k = 2 \) (deviation slower than a parabola).

This hypothesis leads to the closed-form expression \(\beta(s, 1, t)/\alpha(s, 1, t) = 2G'(s)/G(s) \). A closed formula is also obtained for the Euler equation [20, (53)], yielding a complete model.

Result 1 (Horn model with curvilinear abscissa \(\theta \)

Hypothesis 1 provides a 1D acoustic model which is the same as for plane waves, except that the space variable \(s = z \) is replaced by the curvilinear abscissa \(s = \theta \) that measures the profile length (so that \(\alpha(\theta, 1, t) = 1 \). The bore descriptions \(z \rightarrow R(z) \) and \(\theta \rightarrow R(\theta) \) are linked by

\[
\theta = L(z) = \int_0^z \sqrt{1 + (R'(z))^2} \, dz.
\]

(6)

The horn equation and the Euler equation are given by

\[
(\partial^2_\theta - \varphi(\theta) - \frac{\partial^2}{\partial \theta^2}) [R(\theta) \rho(\theta, t)] = 0,
\]

(7)

with

\[
\varphi = \frac{R'}{R}.
\]

\[
\rho \partial_\theta \rho(\theta, t) + \partial_\theta \rho(\theta, t) = 0.
\]

(8)

2.4. Remarks, properties and validity

This model restores a Webster horn equation, in accordance with [18]. Its modification is concerned with the space variable (6) rather than replacing the cross-section area by e.g. that of \(S_{\xi} \) (Figure 1b). This is due to Hypothesis 1 which is local-in-space and does not require static spherical isobars, following property 1(v). Moreover, (6)–(8) regenerate exact models for straight pipes (\(\theta = z \), \(R(z) = R(\theta) = R_0 \) and conical pipes (\(\theta = z/\cos \theta \equiv r \) in property 1(ii)), \(R(z) = z \tan \theta, R(\theta) = \theta \sin \theta \). These cases correspond to \(Y_f = 0 \).

For non-straight pipes, the \(z \)-model is not exact: its validity is limited to the low frequency range \(f \ll \) \((e/\pi) \left(\frac{1}{2} \int_0^z \left[R'(z)^2 \right] \, dz \right)^{-1} \) (see [24, (7.159)]).

Property 2 (\(\theta \)-model) Compared to the \(z \)-model, the \(\theta \)-model modifies some practical features (see Figure 2):

(i) the equivalent pipe length is increased (as any local travel length: \(L(z + \delta) - L(z) \geq \delta \) if \(\delta \geq 0 \)),

(ii) the slopes are weakened as

\[
R'(L(z)) = R'(z)/\sqrt{1 + (R'(z))^2}\quad \text{so that} \quad |R'(\theta)| \leq 1.
\]

and that \(R'(\theta) = 1 \) matches the vertical limit,

(iii) if a bore ends with a (possibly infinitesimal) cone \(Y_f = 0 \) at \(\theta = L \), the \(\theta \)-model operates as a connection with ideal spherical waves for \(\theta \geq L \),

(iv) the value and the shape of the flaring constant \(Y \) are modified (\(Y_L = R'/R \) in (3), \(Y_f = R'/R \) in (7)),

(v) the locations of the peaks of immittances are modified in a non trivial way, as a consequence of (i-iv).

This is emphasized by the following acoustic feature.

Remark 2 (Local-in-space cutoff frequency \(f' \)

When the flaring parameter \(Y \) is positive, it can be mapped to a local-in-space cutoff frequency \(f' = \frac{e}{\pi} \sqrt{Y} \) below which travelling waves are evanescent [17].
The differences between z- and θ-models increase with the deviation $L(z) - z$. According to (6), this occurs when the profile slope R' moves away from 0 (see Figure 2).

The validity of a 1D horn equation is limited in practice to frequencies for which no transverse modes can be excited. An order of magnitude is given for the case of a straight pipe with radius $R_{\text{max}} = \max_{\theta \in [0, L]} R(\theta)$

$$f < f^+ \quad \text{with} \quad f^+ = \frac{K^+}{R_{\text{max}}} = \frac{1.84 c}{2\pi} \approx 100 \text{ m/s.} \quad (9)$$

Another validity condition is at Y be small enough to be close to exact models ($Y = 0$).

Hypothesis 1 does not provide quantitative validity criteria but section 6 gives a comparison between models and measurements.

In the following, s denotes the complex Laplace variable.

3. **Ingredient 2: smooth connection of Y-constant segments**

3.1. History summary and problem statement

Piecewise approximations have been first based on straight pipe segments (Figure 3a). This yields simple transfer matrices from which a Kelly-Lochbaum structure is obtained, that is, a digital waveguide structure involving propagators (delays) and a single reflection function at each junction [1, 25]. The deduced auto-regressive filters have been extensively used for real-time sound synthesis, especially for the vocal tract [7, 8]. But, this first model introduces several approximations: (1) profile discontinuities, (2) frequency-independent radiation, (3) no viscothermal losses. The first one involves instantaneous reflections. It makes the impulse response (IR) of immitances composed of Dirac pulses rather than the expected smooth ones. This artifact is concealed (regularized IRs) if approximations (2) or (3) are dropped. It is also why the space discretization is usually chosen such that the pulses are synchronized with the sampling period. As an alternative, conical segments have been used to increase the regularity (Figure 3b). These segments significantly improve the acoustic results, if the radius deviation and their slope variation are small enough [26, 4, 6, 10]. It yields a Kelly-Lochbaum structure for C^n-junctions [3]. Some smooth profiles have also been studied (e.g. Bessel horns [17], exponential horns [27], see also [28]).

Here, the C^1-regular junction of Y-constant segments is proposed (same regularity as cubic splines, but segments are not polynomial because of the acoustic model). One issue addressed here is: which degree of regularity can be reached on the acoustic impulse responses?

3.2. Transfer matrix method for piecewise Y-constant profiles

Consider a segment on $\theta \in (a, b)$ governed by (7-8) with constant parameter Y < 0 (convex bore), Y = 0 (straight, conical) or Y > 0 (flared).
Matrix $T_{k,a}$ defines a stable causal operator for positive profiles, that is, if $R(a) > 0$, $R(b) > 0$ and $(b - a)^2 Y > -\pi^2$.

Remark 3 (Wavenumber) The wavenumber k is such that $i k = \Gamma(i\omega)$ where ω is the angular frequency. For straight and conical pipes ($Y = 0$), it becomes $k = \omega/c$.

The acoustic connection of N segments (located by $\theta_0 < \theta_1 < \cdots < \theta_N$) is achieved by imposing the continuity of X_θ at junctions. This yields the transfer matrix method

$$X_{\theta_k}(s) = T_{\theta_k,\theta_{k-1}}(s) X_{\theta_{k-1}}(s),$$

$$T_{\theta_k,\theta_{k-1}} = T_{\theta_k,\theta_{k-2}} T_{\theta_{k-1},\theta_{k-3}} \cdots T_{\theta_1,\theta_0},$$

which exactly restores the standard results for straight and conical pipes (see Figure 3 and e.g. [8, 24, p.293]).

Remark 4 (Continuous profiles) For C-splines, (12) takes the simpler form

$$T_{\theta_k,\theta_{k-1}} = \Lambda_{\theta_k} M_{\theta_k,\theta_{k-1}} \Lambda_{\theta_{k-1}}^{-1}$$

with

$$M_{\theta_k,\theta_{k-1}} = M_{\theta_k,\theta_{k-2}} M_{\theta_{k-1},\theta_{k-3}} \cdots M_{\theta_1,\theta_0}.$$

3.3. Kelly-Lochaum structure for flared horns

Piecwise cylindrical @, conical #, and Y-constant @ segments can be described by digital waveguides (Figure 4): they are composed of pairs of travelling operators (called propagators) with transfer function $W_n(s) = \exp[-(\theta_n - \theta_{n-1})\Gamma_n(s)]$ which are interconnected through two-port operators C_n at junctions, and connected to load transfer functions at boundaries $[1, 2, 3, 5, 30, 31, 32, 33]$.

In cases @-\odot ($Y = 0$), propagators are simple delays $D_n(s) = \exp(-\tau_n s)$ with $\tau_n = (\theta_n - \theta_{n-1})/c$. In case \odot, the dispersion function $G_n(s) = W_n(s)/D_n(s) = \exp(\tau_n(s - c f_n(s)))$ corresponds to a (non-delayed) causal stable operator, only if $Y \geq 0$ [30].

Computing its IR yields [34, p.49], for all $Y > 0$,

$$g_n(t) = \delta(t) - 1_{t \geq 0}(t) e^{-\tau_n |t|} J_1(\sqrt{\tau_n t}) / \sqrt{t + \tau_n} \tag{14}$$

where J_1 is the Bessel function of the first kind of order 1.

Moreover, for sufficiently regular profiles, the following property of C_n comes out (see [2, 3, 31] and [33, § 4]).

Property 3 (Kelly-Lochaum factorization) When the geometric regularity allowed by piecewise descriptions @-\odot is maximal (discontinuous for @, continuous for @, C-regular for \odot), each two-port function $C_n(s)$ can be realized with only one reflection transfer function $K_n(s)$ and three sums (Figure 5).

This factorization significantly reduces the computation load of simulations for sound synthesis purposes.

3.4. Considerations on pulse trains and regularity

Consider a smooth bore with $Y \geq 0$ loaded by a frequency-independent radiation or an infinitely-long last segment. Then, the following property is satisfied.

Property 4 The impulse response regularity of immitances of $\odot-\odot$ is fixed by that of reflection functions K_n.

Proof: For cases $\odot-\odot$, propagators reduce to delays D_n and the result is straightforward. For case \odot, $G_n = W_n/D_n$ contains a direct gain 1 (δ in equation 14), yielding the result.

Table I recalls reflection function formulae and illustrates a caricature approximation of a flared profile with two segments. The analysis of these reflection functions yields the following result.

Result 3 (Impulse response regularity) For a smooth flared profile, C^1-regular junctions of Y-constant segments define the simplest piecewise-approximation that preserves the IR, independently of the number of segments and the load impedance.

Proof: The IR discontinuity of cases $\odot-\odot$ is straightforward: for \odot, the impulse response of the reflection corresponds to a Dirac pulse; for \odot, it corresponds to a causal damped exponential (one-pole filter in the Laplace domain) which is discontinuous at $t = 0$. Now, for \odot,

$$K_1(\odot) = \Gamma_1(s) - \Gamma_2(s) = \frac{Y_1 - Y_2}{(\Gamma_1(s) + \Gamma_2(s))^2}$$

$$= \frac{Y_1 - Y_2}{4c_s^2} + \mathcal{O}(\frac{\tau}{s})$$

as $s \to +\infty$. Hence, from the initial value theorem, $k_1(0^+) = \lim_{x \to +\infty} x k_1(x) = 0$ and $k_1(0^+) = \lim_{x \to +\infty} x^2 K_1(x) = (Y_1 - Y_2)/2$. Since $k_1(t)$ has no jump at $t = 0$ and k_1' has one, the IR regularity is C^1 but not C^2, which concludes the proof.
Table I. Regularity of the reflection functions involved in Kelly-Lochbaum structures w.r.t. the regularity of geometry. First line: Approximation of R^3 with two segments ($\vartheta_0 = 0.3$, $\vartheta_1 = 0.4$, $\vartheta_2 = 0.5$).

<table>
<thead>
<tr>
<th>Profile regularity</th>
<th>discontinuous (straight pipes)</th>
<th>continuous (C^0) (conical pipes)</th>
<th>Smooth (C^1) (Y-constant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_1(s)$</td>
<td>$(A_1 - A_2)/(A_1 + A_2)$</td>
<td>$a_1/(s - a_1)$</td>
<td>$(\Gamma_1(s) - \Gamma_2(s))/(\Gamma_1(s) + \Gamma_2(s))$</td>
</tr>
<tr>
<td>$k_1(t)$</td>
<td>$((A_1 - A_2)/(A_1 + A_2))\delta(t)$</td>
<td>$a_1 \exp(a_1 t)\text{1}_{t>0}$</td>
<td>no closed-form solution</td>
</tr>
<tr>
<td>Jump at $t = 0$</td>
<td>infinite</td>
<td>$a_1 = (c/2)(R'(\vartheta_1^+) - R'(\vartheta^+)))/R(\vartheta_1)$</td>
<td>continuous (C^0)</td>
</tr>
<tr>
<td>IR regularity</td>
<td>Dirac type</td>
<td>discontinuous</td>
<td></td>
</tr>
</tbody>
</table>

Remark 5 (Piecewise conical approximation)

Nearly-continuous IR can be obtained by using C^0-regular junctions of cones and increasing the number of segments so that the mesh is refined and that coefficients $a_n = c(R'(\vartheta_2^+) - R'(\vartheta_2^+))/(2R(\vartheta_2))$ become small enough.

A conjecture for higher degrees of regularity is that a C^3-regular profile corresponds to a C^3-1-regular impulse response.

Note that, in the cases @–@, defining N segments from a target profile R is obtained by evaluating R at chosen abscissa $\vartheta_{n=0,...,N}$. On the contrary, deriving a C^3-regular piecewise Y-constant decomposition is not easy. A tool which is specifically dedicated to optimize case @ is used in this paper: it is detailed in [35].

4. Ingredient 3: radiation impedance

4.1. History summary and context

The radiation impedance balances the energy which is confined in the pipe (a) and the radiated part (b). In the frequency range where phenomenon (a) dominates, the quality of resonances is high (making self-sustained oscillations and note emissions easier). Tuning the trade-off between these quality factors and the radiated sound power (especially for modern instruments) makes the study of impedances and their cutoff frequency crucial.

The first models used for wind instruments were based on planar pistons or straight pipes with various flange configurations. They can be described by

$$P_L/V_L = Z_{\text{rad}} = \rho c \bar{Z},$$

where the transfer function Z is dimensionless and is usually given w.r.t $k a = (2\pi f/c)a$ (a is the radius of the pipe and k is the wavenumber).

The difference between piston and pipe models is whether or not evanescent modes are taken into account. The most used models are (see Figure 6):

(Z) a flanged circular piston

$$Z_1 = 1 - \frac{2J_1(2ka)}{2ka} - \frac{2H_1(2ka)}{2ka},$$

where J_1 and H_1 are the first kind Bessel function and the Struve function of order 1, respectively [34]. The sign of the imaginary part is obtained by choosing a decomposition into mono-chromatic signals with the conversion $\exp(2i\pi f t)$ which is consistent with the Fourier and Laplace transforms with $s = 2i\pi f$.

(Z2) a flanged circular pipe [9, 36],

(Z3) an unflanged pipe [37, V.16],

(see [9] for a comparison with their computations, [38] for an unflanged planar piston, [39] for the influence of the wall thickness and [40, 41] for other generalizations).

However, these models are not well-suited to flared horns, especially when the angle θ_0 of the tangent cone at the horn output is obuse (see Figure 7). To account for spherical wavefronts, a corrected version of Z_3 with factor A_p/A_s has been proposed in [26] ($A_p = \pi R^2 = \pi r_0(\sin \theta_0)^2$ and $A_s = 2\pi r_0^2(1 - \cos \theta_0) = 2\pi R^2/(1 + \cos \theta_0)$ are respectively the planar and spheric-
cal radiating areas). It yields

$$Z_4 = \frac{A_y}{A_x} Z_3 = \frac{1 + \cos \theta_0}{2} Z_3,$$

with $\theta_0 \approx 59.2^\circ$ for the profile R^1 at $z = z^*$ (defined in the Appendix). This model is consistent with energy conservation and mass conservation. It gives an exact result on $\Re(Z_4)$ in the low frequency limit. This impedance (see Figure 6) has been quite often used for bell modelling (see e.g. [4]).

To refine the effect of spherical wavefronts, the model Z_3 restated and analyzed here is one of [42]. It is based on a pulsating portion of a sphere. Following some comparison with measurements in [10], these refinements are significant in the case of a bell, especially beyond the cut-off frequency.

4.2. Model Z_3 and properties

Consider a sphere with radius r_0, whose part $S_0 (\theta \leq \theta_0$, see Figure 7) is animated with velocity V_0 and the other one is motionless.

Under lossless linear acoustic assumptions and using spherical harmonic decompositions, the transfer function in the Fourier domain between $V_0(f)$ (f denotes the frequency) and the pressure field $P_{r_0,\theta_0}(r, \theta)$ in the external space ($r \geq r_0$) is found to be

$$\frac{P_{r_0,\theta_0}(r_0, \theta, f)}{V_0(\theta, f)} = \rho c H_{\theta_0} \left(\frac{r_0}{r}, \theta_0, \frac{r_0 f}{c} \right),$$

where $H_{\theta_0}(\xi, \theta, \nu) = -i \sum_{n=0}^{\infty} \mu_n(\theta_0) P_n(\cos \theta) \frac{\hat{h}_n(2\pi \xi \nu)}{\hat{h}_n(2\pi \nu)}$,

$$\mu_n(\theta_0) = \frac{\hat{P}_{n-1}(\cos \theta_0) - \hat{P}_{n+1}(\cos \theta_0)}{2}, \quad \hat{P}_n(1) = 1,$$

and, for $n \geq 0$, P_n and \hat{h}_n denote the Legendre polynomials and the outgoing spherical Hankel functions, respectively.

The dimensionless impedance on S_0 is then characterized by $H_{\theta_0}(\xi, \theta, \nu)$ with $\xi = 1$.

Remark 6 (Reduced frequency ν)

In H_{θ_0}, the reduced frequency $\nu = f r_0/c = k r_0/(2\pi)$ is proportional to the sphere radius r_0 (in place of the pipe radius a in $Z_{1,2,3,4}$).

To make this impedance consistent with the 1D quasi-spherical model, its dependency w.r.t. θ must be removed. The approximation which minimizes the mean-square error over S_0 is the average on S_0. Its computation yields

$$Z_{\theta_0}(\nu) = -\frac{2i}{1 - \cos \theta_0} \sum_{n=0}^{\infty} \left(\frac{\mu_n(\theta_0)}{2n+1} \right)^2 \frac{\hat{h}_n(2\pi \nu)}{\hat{h}_n(2\pi \nu)}.$$

As a result [42, see (24) and Figure 3c], the error is negligible in the very low frequency range ($\nu < 1$). The maximal error w.r.t. ν is a decreasing function of θ_0, so that Z_{θ_0} is a better approximation for large angles than for small ones.

Moreover, Z_{θ_0} can be approximated by simpler models (denoted (M1,2,3) in [42, §4]), the parameters of which have also been optimized for the mean-square error over S_0. Model (M2) is detailed below and displayed in Figure 8: it furnishes a good trade-off between the complexity and the accuracy for most of brass instruments.

Result 5 (Radiation impedance Z_5) For small angles θ_0, Z_{θ_0} is close to model Z_1 (flanged piston) which includes characteristic ripples. For angles θ_0 larger than about 55° (most of brass instruments), these ripples disappear and Z_{θ_0} is accurately approximated by the following second order model where the introduced error is negligible w.r.t. to that due to the average on S_0:

$$Z_5 : \nu \mapsto \frac{k r_0}{2\pi} \mapsto \left[1 + 2i \xi \nu \left(\frac{\nu}{\nu_c} \right)^2 \right].$$

Figure 7. Flared horn radiation approximation.

Figure 8. Impedance averaged on $S_0 (\ldots)$ and second order model $Z_5 (\cdots)$.

with the positive parameters, for $0 \leq \theta_0 \leq \frac{\pi}{3}$ (in radians),

$$\xi(\theta_0) = \frac{0.0207\theta_0^3 - 0.1444\theta_0^2 + 0.2216\theta_0}{0.0799\theta_0 + 0.72},$$

$$a(\theta_0) = \left[0.1113\theta_0^3 - 0.6360\theta_0^2 + 1.162\theta_0 \right]^{-1},$$

$$v_c(\theta_0) = \left[-0.198\theta_0^3 + 0.2607\theta_0^2 - 0.424\theta_0 \right]^{-1},$$

$$0.07946\theta_0^2 + 4.704\theta_0 + 0.022.$$
Table II. Physical constants in the air and characteristic constants (extracted from [24, p.212]). $T_0 = 273.16 \text{ K}$ is the absolute temperature at 0 Celsius degree, $T = 298.66 \text{ K}$. Sound speed c_s, air density ρ, viscosity μ, thermal conductivity κ, specific heat capacity at constant pressure C_p, heat capacity ratio γ, specific heat capacity at constant volume C_V, Viscous characteristic length (5.133×10^{-3} m), Prandtl number Pr, Thermal characteristic length θ_t.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Accuracy</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c = 331.5 \sqrt{\frac{T}{T_0}}$</td>
<td>±0.015%</td>
<td>346.63 m/s</td>
</tr>
<tr>
<td>$\rho = 1.2929 T_0 / T$</td>
<td>±0.01%</td>
<td>1.18 Kg/m³</td>
</tr>
<tr>
<td>$\mu = 1.708 \times 10^{-5}$</td>
<td>±2%</td>
<td>1.834 $\times 10^{-5}$ kg/m/s</td>
</tr>
<tr>
<td>$(1 + 0.0029(T - T_0))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\kappa = 0.02041$</td>
<td>±9%</td>
<td>0.0261 J/m/s/K</td>
</tr>
<tr>
<td>$(1 + 0.0033(T - T_0))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_p = 0.24$</td>
<td>±0.1%</td>
<td>0.24 Cal/g/°C</td>
</tr>
<tr>
<td>$\gamma = 1.402$</td>
<td>±0.1%</td>
<td>1.402</td>
</tr>
<tr>
<td>$C_V = C_p / \gamma$</td>
<td>±0.1%</td>
<td>0.1712 Cal/g/°C</td>
</tr>
<tr>
<td>$\theta_t = \mu / (\rho c_v)$</td>
<td>±2%</td>
<td>4.751 $\times 10^{-6}$ m</td>
</tr>
<tr>
<td>$Pr = 0.71$</td>
<td>x</td>
<td>0.71</td>
</tr>
<tr>
<td>$\theta_t = \theta_t / Pr$</td>
<td>x</td>
<td>6.303 $\times 10^{-6}$ m</td>
</tr>
</tbody>
</table>

Property 5 Model Z_3 is physically relevant:

(i) it defines a causal stable passive impedance,
(ii) it has the right asymptotic acoustic behaviours,
\[\lim_{v \to 0} Z_3(iv) = 0 \quad \text{and} \quad \lim_{v \to \infty} Z_3(iv) = 1. \]

Moreover, its cutoff frequency (such that $|Z_3|^2 = 1 / 2$) is

(iii) $\quad f_{\text{cutoff}} = \left(\frac{c}{r_0} \right) v_s \sqrt{1 + \beta^2 - \beta} \quad \text{where} \quad \beta = 1 + a^2 - 2x^2$.

Proof: Equation (15) is also available in the complex Laplace domain $\Re(s) > 0$ with $s = 2\pi v_x$.

For all angles $\theta_0 \in [0, \pi/2]$, its poles $s = 2\pi v_x(-x \pm i\sqrt{1 - x^2})$ have a negative real part, from which the stability is deduced. Computing $\Re(Z_3)$ yields $X^2(2a_2 x + 1 - X^2)/(1 - X^2)^2 + (2x X)^2$ with $X = v / v_c$. It is negative for all X, if $2a_2 x - 1 \geq 0$.

Now, $\min_{\theta_0} (2a(\theta_0) x(\theta_0)) \geq 1.2$, proving the passivity. (ii) is straightforward. Finally, straightforward derivations show that $|Z_3|^2 = 1/2$ is zero if $X^2 + 2\beta X^2 - 1$. The only positive root is $X = \sqrt{-\beta + \sqrt{1 + \beta^2}}$ from which (iii) is deduced.

For the physical constants and the (trombone) parameters given in Tables II and III, (iii) yields $f_{\text{cutoff}} \approx 848 \text{ Hz}$. Moreover, Z_3 is consistent with the mass and the energy conservation principles (as Z_4) since, numerically and according to [42, §4.4], $\lim_{v \to \infty} \Re(Z_3(iv))/(2\pi v)^2 \approx (1 - \cos \theta_0)/2$.

2 Note that the thermal conductivity $\kappa = 5.77 \times 10^{-3}(1 + 0.0033(T - T_0)) \text{ Cal/cm/s/°C}$ given in [24] has been converted into J/m/s/K using the thermochemical calorie 1 Cal$_{ch}$ = 4.184 J.

Table III. Mesh description of the horn of a trombone Courtois 155R: ζ_m is the axial position, \varnothing_m is the corresponding length of the profile from z_0 to ζ_m, R_m is the radius of the profile.

<table>
<thead>
<tr>
<th>index m</th>
<th>ζ_m (mm)</th>
<th>\varnothing_m (mm)</th>
<th>R_m (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td>10.4</td>
</tr>
<tr>
<td>1</td>
<td>66.5</td>
<td>66.5000</td>
<td>10.4</td>
</tr>
<tr>
<td>2</td>
<td>153.0</td>
<td>153.0113</td>
<td>11.8</td>
</tr>
<tr>
<td>3</td>
<td>198.4</td>
<td>198.4247</td>
<td>12.9</td>
</tr>
<tr>
<td>4</td>
<td>266.5</td>
<td>266.5570</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>315.0</td>
<td>315.0868</td>
<td>16.7</td>
</tr>
<tr>
<td>6</td>
<td>364.3</td>
<td>364.4315</td>
<td>18.8</td>
</tr>
<tr>
<td>7</td>
<td>400.0</td>
<td>400.1875</td>
<td>20.8</td>
</tr>
<tr>
<td>8</td>
<td>418.4</td>
<td>418.6266</td>
<td>22.0</td>
</tr>
<tr>
<td>9</td>
<td>431.8</td>
<td>432.0717</td>
<td>23.1</td>
</tr>
<tr>
<td>10</td>
<td>442.5</td>
<td>442.8387</td>
<td>24.3</td>
</tr>
<tr>
<td>11</td>
<td>454.6</td>
<td>455.0442</td>
<td>25.9</td>
</tr>
<tr>
<td>12</td>
<td>463.7</td>
<td>464.2511</td>
<td>27.3</td>
</tr>
<tr>
<td>13</td>
<td>472.9</td>
<td>473.5892</td>
<td>28.9</td>
</tr>
<tr>
<td>14</td>
<td>480.5</td>
<td>481.3585</td>
<td>30.5</td>
</tr>
<tr>
<td>15</td>
<td>488.0</td>
<td>489.0461</td>
<td>32.2</td>
</tr>
<tr>
<td>16</td>
<td>492.4</td>
<td>493.5815</td>
<td>33.3</td>
</tr>
<tr>
<td>17</td>
<td>496.7</td>
<td>498.1356</td>
<td>34.8</td>
</tr>
<tr>
<td>18</td>
<td>501.3</td>
<td>502.9439</td>
<td>36.2</td>
</tr>
<tr>
<td>19</td>
<td>505.4</td>
<td>507.2451</td>
<td>37.5</td>
</tr>
<tr>
<td>20</td>
<td>508.4</td>
<td>510.4762</td>
<td>38.7</td>
</tr>
<tr>
<td>21</td>
<td>510.8</td>
<td>513.1163</td>
<td>39.8</td>
</tr>
<tr>
<td>22</td>
<td>514.2</td>
<td>516.9176</td>
<td>41.5</td>
</tr>
<tr>
<td>23</td>
<td>518.3</td>
<td>521.5705</td>
<td>43.7</td>
</tr>
<tr>
<td>24</td>
<td>521.4</td>
<td>525.1552</td>
<td>45.5</td>
</tr>
<tr>
<td>25</td>
<td>524.0</td>
<td>528.3755</td>
<td>47.4</td>
</tr>
<tr>
<td>26</td>
<td>526.7</td>
<td>531.7355</td>
<td>49.4</td>
</tr>
<tr>
<td>27</td>
<td>530.8</td>
<td>536.9365</td>
<td>52.6</td>
</tr>
<tr>
<td>28</td>
<td>534.4</td>
<td>541.5593</td>
<td>55.5</td>
</tr>
<tr>
<td>29</td>
<td>537.8</td>
<td>546.3676</td>
<td>58.9</td>
</tr>
<tr>
<td>30</td>
<td>541.2</td>
<td>551.1759</td>
<td>62.3</td>
</tr>
<tr>
<td>31</td>
<td>543.9</td>
<td>555.2120</td>
<td>65.3</td>
</tr>
<tr>
<td>32</td>
<td>546.8</td>
<td>559.6808</td>
<td>68.7</td>
</tr>
<tr>
<td>33</td>
<td>550.4</td>
<td>565.6808</td>
<td>73.5</td>
</tr>
<tr>
<td>34</td>
<td>553.0</td>
<td>570.2851</td>
<td>77.3</td>
</tr>
<tr>
<td>35</td>
<td>555.8</td>
<td>575.2500</td>
<td>81.4</td>
</tr>
<tr>
<td>36</td>
<td>558.0</td>
<td>580.1694</td>
<td>85.8</td>
</tr>
<tr>
<td>37</td>
<td>560.8</td>
<td>585.3847</td>
<td>90.2</td>
</tr>
<tr>
<td>38</td>
<td>563.3</td>
<td>591.2448</td>
<td>95.5</td>
</tr>
<tr>
<td>39</td>
<td>565.4</td>
<td>597.8855</td>
<td>101.8</td>
</tr>
<tr>
<td>40</td>
<td>568.0</td>
<td>606.4879</td>
<td>110.0</td>
</tr>
</tbody>
</table>

5. Ingredient 4: visco-thermal losses

5.1. History summary and context

Kirchhoff, first, has introduced thermal conduction effects, extended the Stoke’s theory and derived some basic solutions in free space and in a pipe. He gave the exact general dispersion relation for a cylinder for axisymmetric problems [43] (see [44, eq. (56)]) for non symmetric versions. Simplified models have also been proposed: separated viscous and thermal boundary layers (by Zwikker and Kosten [24, p.210], see [45, 46] for validity conditions), and the Cremer equivalent wall admittance for plane waves, which depends on the incidence angle on the wall and coincides
with the Kirchhoff result for rectangular waveguides if the boundary layer thickness is much smaller than the rectangle lengths. Propagation models based on this admittance and plane wave approximations have been derived. They include a damping term involving a fractional time derivative (see the Lokshin equation [47, 48] and [49]). Closed-form solutions of the Lokshin equation have been derived in [50, 51]. The model considered here is an extension of result 1.

5.2. Introducing visco-thermal losses in the curvilinear horn model and Y-constant segments

Adapting hypothesis (H1) in § 2 to the case of walls with a Cremer wall admittance, a perturbed curvilinear version of (7) is obtained (see [20]). It is given by

$$
\left(\frac{\partial}{\partial \varphi} + \frac{1}{2} \frac{R'(\varphi)}{R(\varphi)} \right) \frac{1}{c_{s}^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} - 2 \varepsilon(\varphi) \frac{\partial}{\partial \varphi} \right) P(\varphi, t) = 0.
$$

(16)

In the last term, $\partial^{3/2}$ denotes a fractional time derivative (see e.g., [50] and references therein) and coefficient ε is given by $\varepsilon(\varphi) = \varepsilon^{*} \sqrt{1 - R'(\varphi)^{2}/R(\varphi)}$ where $\varepsilon^{*} = \sqrt{\gamma} + (\gamma - 1) \sqrt{\gamma} \approx 3.125 \times 10^{-4} \text{m}^{1/2}$ according to the physical constants given in Table II (Kirchhoff’s formula). This equation is sometimes called the “Webster-Lokshin” equation, because the “Webster equation” is recovered for $\varepsilon = 0$ and the “Lokshin equation” is recovered for $R' = 0$.

The complete model is (8), (16). It governs the propagation of the acoustic state out of the visco-thermal boundary layers.

Remark 6 (planar wave approximation)

A similar model has been derived in [49], assuming plane waves. It leads to (16), in which ∂, $R(\varphi)$ and $\varepsilon(\varphi)$ are replaced by ζ, $R(z)$ and the loss coefficient $\varepsilon(z) = \varepsilon^{*}/R(z)$ which only depends on the profile radius (but not on its slope).

Consider Y-constant segments (indexed by $n = 1, \ldots, N$) on which $\theta \rightarrow \varepsilon(\varphi)$ is approximated by its mean value, namely,

$$
\varepsilon_{n}^{*} = \frac{1}{\theta_{n} - \theta_{n-1}} \int_{\theta_{n-1}}^{\theta_{n}} \sqrt{1 - R'(\varphi)^{2}/R(\varphi)} \, d\varphi
$$

(or, according to remark 3, $\varepsilon_{n}/\varepsilon^{*} = 1/(z_{n} - z_{n-1}) \cdot \int_{z_{n-1}}^{z_{n}} (1/R(z)) \, dz$ for the planar wave approximation). This yields the same transfer matrix as in result 2 where (11) is replaced by

$$
\Gamma_{n}(z)^{2} = \left(\frac{\delta}{c} \right)^{2} + 2 \varepsilon_{n} \left(\frac{\delta}{c} \right)^{1/2} + Y_{n}.
$$

(17)

Moreover, the following result has been proved, even for constant piecewise profiles [50, 51] (Table Ia, Figure 9a).

Result 5 (Regularization and long-memory)
The fractional derivative in (16) regularizes the IR of immittances and introduces some “long-memory effects”:

![Figure 9](image)

Figure 9. Pressure transmission IR $h(\rho(L, \cdot) = h \ast p(0, \cdot))$ for a straight pipe loaded with a constant positive impedance. (a): no losses; $\varepsilon = 0$ [50, figure 5.5], (b): losses; $\varepsilon = 0.25$ [50, figure 6.7b]

![Figure 10](image)

Figure 10. Measured profile \cdot and corresponding θ-profile \cdot. See also Table III.

(i) Dirac pulses are transformed into $\mathcal{C}^{\varepsilon_{n}}$-pulses,
(ii) these pulses decay more slowly than any decreasing exponential (long-memory),
(iii) the modes of such fractionally-damped systems are not reduced to standard Q-resonances.

Remark 7 (Modes in fractional systems)

In (iii), the modal dynamics is not of exponential-type but of Mittag-Leffler type [52], with long-memory decays. Their IR functions can be decomposed into a finite sum (poles) and an infinite-continuous sum (integrals on cuts) of first order models [30, 51, 53, 54].

The regularization and the long-memory effects also appear in cases $\odot-\odot$ (see [30, Figure 10] and [33, Figure 17]).

6. Application and results

In this section, results based on §2-5 are compared to the measures published in [10] for a trombone bell.

6.1. Geometry

The bell of a trombone (Courtos 155R) has been isolated from the whole instrument. Its bore, that is its interior chamber, is described by a set of $M + 1$ measured points (z_{n}, R_{n}) (see Table III). According to some instrument makers’ descriptions, the discretization step used to mesh the profile is not chosen uniform but is adjusted so that its piecewise continuous affine interpolation provides an accurate description. The z-profile is displayed in Figure 10. The last segment is a piece of cone with angle $\theta_{b} = 72.4^\circ$ and the distance from its apex to its extremity is $r_{0} = 0.1154 \text{m}$.
According to (6), the exact curvilinear version of this profile is given by the piecewise continuous affine interpolation of the mesh \((\theta_n, R_n)\), where \(\theta_0 = z_0 = 0\) and
\[
\theta_n = \theta_{n-1} + \sqrt{(z_n - z_{n-1})^2 + (R_n - R_{n-1})^2}, \text{ if } n \geq 1.
\]

This \(\theta\)-profile is described in Table III and displayed in Figure 10.

Using the method described in [35], accurate \(C^1\)-regular shapes are regenerated for both the \(z\)- and the \(\theta\)-profiles, using five \(Y\)-constant segments (see Table IV and Figure 11 for \(\theta\)).

6.2. Acoustic characteristics: measurement and models

The input impedance of the trombone bell in [10] has been measured using the experimental setup described in [55]. The measured data are displayed in Figure 12 in dashed lines, and are repeated in Figures 13–15. The calibration tests obtained in [10, § 3.1] on a reference closed straight pipe lead to the following estimates of physical constants: \(\rho = 1.18 \text{Kg/m}^3\), \(c = 346.63 \text{m/s}\). This corresponds to the "equivalent temperature" \(T = 25.5^\circ\text{C}\) (which also accounts for the effect of humidity). The coefficient of losses is computed for this temperature, from Table II \(\varepsilon^\ast = \sqrt{\varepsilon_0} + (\gamma - 1)\sqrt{\varepsilon_0} \approx 3.125 \cdot 10^{-4} \text{m}^{1/2}\).

For each segment \(n\), the visco-thermal coefficients \(\varepsilon_n\) are computed as the average of \(\varepsilon\) over the segment w.r.t. the considered space variable as specified in § 5.2. Their values are given in Table IV.

Based on these data, the normalized input impedance \(Z_{in} = (1/\rho e)P_{input}/V_{input}\) and the modulus \(|R_{measure} - R_{model}|\) of the deviation of the input reflection function \(R_n = (Z_{in} - 1)/(Z_{in} + 1)\) are computed for the bore loaded by a radiation impedance. The tested configurations are summarized in Table V: model \(M_e\) is the model including all the ingredients; models \(M_\theta\) to \(M_{e=0}\) include all the ingredients except one; models \(M_{planar}\) and \(M_{CKL}\) correspond to "historical models"; \(M_{DCG}\) corresponds to a model used in the recent paper [10].

6.3. Comparison

The input impedances of models of Table V are compared below. As mentioned in section 4, the contribution of the propagation models is of main importance below the cutoff frequency of the radiation impedance. For the proposed model \((Z_3)\), based on a pulsating portion of a sphere, the dimensionless parameter \(v_3\) corresponds to 600 Hz and the standard cutoff frequency is given by \(f_{c\text{rad}} = 848\) Hz (see property 5(iii)).

The critical frequency limit (9) for the validity of the propagation model which depends on the maximal radius of the bell is \(f_c^+ = (1.84 \cdot 346.63)/(2\pi \cdot 0.11) \approx 923\) Hz (\(> f_{c\text{rad}}\)). Moreover, the local-in-space cutoff frequency of each \(Y\)-constant segment (see remark 2) is given in Table IV.

6.3.1. Model including the four ingredients

Model \(M_\ast\) is based on 5 segments and gathers the 4 ingredients proposed in sections 2 to 5. The corresponding results are displayed in Figure 12.

The shapes obtained for the model and the measurement fit well, both below and above the cutoff frequency of the bell. Quantitative details are given in § 6.3.5.

6.3.2. All ingredients except one

Models \(M_\theta\) to \(M_{e=0}\) are based on 5 segments and gather the same 4 ingredients as in \(M_\ast\), except one. The corresponding results are displayed in Figure 13.

The comparison between \(M_\ast\) and these models shows that all of the 4 ingredients are relevant, but in different ways. The worst deviation is due to considering the \(z\)-abscessa in the Webster-Lokshin equation \((M_2)\). Hence, it can be noticed that the inverse potential scattering methods based on the Webster equation (see e.g. [56]) could also benefit from considering the curvilinear abscessa \(\theta\) rather than \(z\). Using 5 cones also degrades the quality of the results, especially, beyond 1200 Hz. Significant deviations beyond \(f_{c\text{rad}} \approx 848\) Hz are also induced by radiation models \(Z_1, Z_3, Z_4\). Finally, neglecting the visco-thermal losses leads to a significant deviation of the first peaks (resonance and anti-resonance).
Table V. Tested models and configurations.

<table>
<thead>
<tr>
<th>Model label</th>
<th>Figure</th>
<th>abscissa</th>
<th>segments and junction regularity</th>
<th>radiation model</th>
<th>visco-thermal losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{ζ}</td>
<td>12</td>
<td>ζ</td>
<td>5 Y-constant, C_1</td>
<td>Z_3</td>
<td>yes (M_{eas})</td>
</tr>
<tr>
<td>M_{SC}</td>
<td>13</td>
<td>ζ</td>
<td>5 Y-constant, C_1</td>
<td>Z_3</td>
<td>yes</td>
</tr>
<tr>
<td>M_{RL}</td>
<td>13</td>
<td>ζ</td>
<td>5 Y-constant, C_1</td>
<td>Z_3</td>
<td>yes</td>
</tr>
<tr>
<td>M_{RK}</td>
<td>13</td>
<td>ζ</td>
<td>5 Y-constant, C_1</td>
<td>Z_3</td>
<td>yes</td>
</tr>
<tr>
<td>M_{E00}</td>
<td>13</td>
<td>ζ</td>
<td>5 Y-constant, C_1</td>
<td>Z_3</td>
<td>no</td>
</tr>
<tr>
<td>M_{planar}</td>
<td>14</td>
<td>ζ</td>
<td>40 straight pipes, discontinuous</td>
<td>Z_3</td>
<td>yes</td>
</tr>
<tr>
<td>M_{CKL}</td>
<td>14</td>
<td>ζ</td>
<td>40 cones, C_0</td>
<td>Z_3</td>
<td>yes</td>
</tr>
<tr>
<td>M_{EDCG}</td>
<td>15</td>
<td>ζ</td>
<td>40 cones, C_0</td>
<td>Z_3</td>
<td>yes</td>
</tr>
</tbody>
</table>

Figure 12. Normalized input impedance of the bell (modulus in dB (20 log$_{10}$) and phase in degrees) and reflection function deviation (modulus, dimensionless, linear scale): measurement (--) and model M_{ζ} (see Table V).

Figure 14. Comparison similar to Figure 12: measurement (--) and models M_{ζ}, M_{CKL} and M_{planar}.

6.3.3. Historical models

A second list of configurations, described in table V, corresponds to "historical models", which are based on "consistent arrangements of ingredients".

Model M_{CKL} is composed of the 40 cones derived from the original profile description and the corrected version Z_4 of the Levine and Schwinger's radiation impedance, as proposed in [26]. Model M_{planar} is built with 40 lossy straight pipes and the Levine and Schwinger's radiation impedance Z_3. As displayed in Figure 14 the latter model is clearly quite poor beyond the first resonance. Model M_{CKL} is quite comparable to M_{ζ} in the low frequency range but, over $f_\text{cut} \approx 848$ Hz, it has misplaced resonances and anti-resonances.

6.3.4. Model used in the recent paper [10]

Model M_{EDCG} corresponds to a model that has been studied in [10]. It is composed of 40 cones (linking all the points measured on the trombone profile), of the radiation model Z_3 described in section 4 and includes visco-thermal losses.

As displayed in Figure 15, this model is very close to M_{ζ}. In this case, the main differences are the number of segments (40 versus 5) and the associated parameters.

6.3.5. Global results and quantitative deviations

Qualitatively, the best models appear to be M_{ζ} and M_{EDCG} (as well as M_{CKL} below $f_\text{cut} \approx 848$ Hz). In these one-dimensional models, the deviations that remain visible are located in the vicinity of the cutoff frequency where both the radiation model and the 1D wave model are not accurate enough.
Out of this area, the frequencies corresponding to resonances and anti-resonances have been computed, in order to quantify the accuracy of the models. To derive accurate values, these frequencies have been chosen as the zero-crossing points of the impedance phase rather than the peaks of the impedance modulus.

The detailed values of the resonance frequencies (respectively, anti-resonance frequencies) computed for each model are given in Table VI (respectively, Table VII), as well as their deviations w.r.t. the measure.

The frequency deviations of the first resonance and anti-resonance are less than 1.2%, 1.6% and 1.8% for M_s, M_{EDCO} and M_{CKL}, respectively. For the resonances and anti-resonances located over 1200Hz, deviations are less than 2.6%, 2.6% and 7.8%. More generally, the quantitative results on frequencies corroborate the more global and qualitative comparison made above.

It can be noticed that a frequency deviation of 1.2% is still perceptible and corresponds to about one fifth of a semi-tone (in the sense that $(2^{1/12})^{1/5} \approx 1.012$). Such a small discrepancy can be due to the model approximations.
Table VI. Resonance frequencies f_n of the input impedance for all the models and deviation δf_n from the measure (the frequencies are computed as those for which the phase is zero and decreasing).

<table>
<thead>
<tr>
<th>Model label</th>
<th>f_n (Hz) (δf_n, %)</th>
<th>f'_n (Hz) ($\delta f'_n$, %)</th>
<th>f''_n (Hz) ($\delta f''_n$, %)</th>
<th>f'''_n (Hz) ($\delta f'''_n$, %)</th>
<th>f''''_n (Hz) ($\delta f''''_n$, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>241.4</td>
<td>517.2</td>
<td>793.0</td>
<td>1484.2</td>
<td>1797.6</td>
</tr>
<tr>
<td>M_1</td>
<td>244.3 (+1.2)</td>
<td>520.2 (+0.6)</td>
<td>818.3 (+3.2)</td>
<td>1487.6 (+0.2)</td>
<td>1800.1 (+1.2)</td>
</tr>
<tr>
<td>M_2</td>
<td>246.5 (+2.1)</td>
<td>531.6 (+2.8)</td>
<td>843.1 (+6.3)</td>
<td>1454.0 (+2.0)</td>
<td>1762.9 (+0.9)</td>
</tr>
<tr>
<td>M_3^{5c}</td>
<td>244.1 (+1.1)</td>
<td>521.6 (+0.8)</td>
<td>860.9 (+8.6)</td>
<td>1551.4 (+4.5)</td>
<td>1922.2 (+8.0)</td>
</tr>
<tr>
<td>M_4</td>
<td>243.9 (+1.0)</td>
<td>518.8 (+0.3)</td>
<td>846.3 (+6.7)</td>
<td>1433.0 (+3.4)</td>
<td>1716.5 (+3.5)</td>
</tr>
<tr>
<td>M_5</td>
<td>244.3 (+1.2)</td>
<td>518.4 (+0.2)</td>
<td>827.7 (+4.4)</td>
<td>1450.6 (+2.3)</td>
<td>1748.3 (+1.8)</td>
</tr>
<tr>
<td>M_6</td>
<td>244.7 (+1.4)</td>
<td>521.8 (+0.9)</td>
<td>806.7 (+1.7)</td>
<td>1599.8 (+7.8)</td>
<td>1875.4 (+5.4)</td>
</tr>
<tr>
<td>$M_{e=0}$</td>
<td>246.3 (+2.0)</td>
<td>522.6 (+1.0)</td>
<td>820.9 (+3.5)</td>
<td>1490.2 (+0.4)</td>
<td>1804.1 (+1.4)</td>
</tr>
<tr>
<td>M_{plane}</td>
<td>244.3 (+1.2)</td>
<td>528.0 (+2.1)</td>
<td>829.7 (+4.6)</td>
<td>1491.2 (+0.5)</td>
<td>1748.7 (+1.7)</td>
</tr>
<tr>
<td>M_{CLT}</td>
<td>245.7 (+1.8)</td>
<td>522.4 (+1.0)</td>
<td>804.1 (+1.4)</td>
<td>1586.6 (+6.9)</td>
<td>1876.0 (+5.4)</td>
</tr>
<tr>
<td>M_{HCG}</td>
<td>245.3 (+1.6)</td>
<td>520.8 (+0.7)</td>
<td>814.7 (+2.7)</td>
<td>1477.4 (+0.5)</td>
<td>1794.3 (+0.8)</td>
</tr>
</tbody>
</table>

Table VII. Anti-resonance frequencies f_n of the input impedance for all the models and deviation δf_n from the measure (the frequencies are computed as those for which the phase is zero and increasing).

<table>
<thead>
<tr>
<th>Model label</th>
<th>f_n (Hz) (δf_n, %)</th>
<th>f'_n (Hz) ($\delta f'_n$, %)</th>
<th>f''_n (Hz) ($\delta f''_n$, %)</th>
<th>f'''_n (Hz) ($\delta f'''_n$, %)</th>
<th>f''''_n (Hz) ($\delta f''''_n$, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>241.4</td>
<td>517.2</td>
<td>793.0</td>
<td>1484.2</td>
<td>1797.6</td>
</tr>
<tr>
<td>M_1</td>
<td>371.3 (+0.8)</td>
<td>669.9 (+0.2)</td>
<td>1329.9 (+1.3)</td>
<td>1641.5 (+1.6)</td>
<td>1956.0 (+2.6)</td>
</tr>
<tr>
<td>M_2</td>
<td>377.6 (+2.6)</td>
<td>688.3 (+3.1)</td>
<td>1300.5 (+3.4)</td>
<td>1607.8 (+0.5)</td>
<td>1915.6 (+0.5)</td>
</tr>
<tr>
<td>M_3^{5c}</td>
<td>373.5 (+1.4)</td>
<td>666.7 (+0.1)</td>
<td>1379.6 (+2.4)</td>
<td>1690.3 (+4.6)</td>
<td>1969.0 (+11.4)</td>
</tr>
<tr>
<td>M_4</td>
<td>370.1 (+0.5)</td>
<td>674.9 (+1.1)</td>
<td>1292.7 (+4.0)</td>
<td>1573.6 (+2.6)</td>
<td>1843.9 (3.3)</td>
</tr>
<tr>
<td>M_5</td>
<td>371.1 (+0.8)</td>
<td>663.3 (+0.6)</td>
<td>1308.1 (+2.9)</td>
<td>1595.6 (+1.3)</td>
<td>1956.0 (+16.3)</td>
</tr>
<tr>
<td>M_6</td>
<td>372.7 (+1.2)</td>
<td>667.5 (+0.0)</td>
<td>1472.4 (+9.3)</td>
<td>1732.1 (+7.2)</td>
<td>1967.2 (+9.2)</td>
</tr>
<tr>
<td>$M_{e=0}$</td>
<td>373.3 (+1.4)</td>
<td>671.9 (+0.7)</td>
<td>1335.5 (+0.8)</td>
<td>1646.7 (+1.9)</td>
<td>1961.2 (+2.8)</td>
</tr>
<tr>
<td>M_{plane}</td>
<td>384.6 (+4.5)</td>
<td>693.1 (+3.9)</td>
<td>1290.5 (+4.2)</td>
<td>1629.3 (+0.8)</td>
<td>1629.3 (+14.6)</td>
</tr>
<tr>
<td>M_{CLT}</td>
<td>371.2 (+0.9)</td>
<td>668.3 (+0.1)</td>
<td>1241.1 (+7.8)</td>
<td>1740.5 (+7.7)</td>
<td>1740.5 (+8.7)</td>
</tr>
<tr>
<td>M_{HCG}</td>
<td>370.3 (+0.6)</td>
<td>669.9 (+0.4)</td>
<td>1362.9 (+1.2)</td>
<td>1658.1 (+2.6)</td>
<td>1951.2 (+2.3)</td>
</tr>
</tbody>
</table>

but also to the lack of accuracy of measurements (physical constants, geometric measurements). Additional tests on other measured bells and wind instrument resonators, as well as a sensitivity analysis could help to quantify the quality of the model.

7. Conclusions

The use of C1-regular junctions of Y constant segments governed by the curvilinear Webster-Lokshin model connected to the radiation impedance of a pulsating portion of a sphere proves to be relevant for the computation of the input impedance of brass instruments. This is the result of the 4 refinements proposed in sections 2 to 5 (in the sense that removing one of them yields worse results). More precisely, considering the curvilinear abscissa rather than the standard axial abscissa in the Webster horn equation is shown to be most important for the significantly flared parts of the bell. From the acoustical point of view, this increases the "travel length" of waves and decreases the local-in-space cutoff frequency below which travelling waves become evanescent. Moreover, combined with C1-regular Y constant piecewise approximations of the profile, this model allows preservation of the accuracy of the non approximated geometry, using only a few segments and the corresponding products of transfer matrices. The proposed radiation model improves the result in the high frequency range, corroborating the results of [10]. Finally, including visco-thermal losses in the Webster equation (Webster-Lokshin equation), which involve long-memory responses in the time-domain, improves the accuracy of the peaks of the input impedance modulus.

In summary, for flared horn, the propagation model refinements are crucial below the cutoff frequency, while the radiation model refinements are crucial beyond this cutoff frequency. However, this relevance and the validity domain have still to be characterized with measures for the case of convex pipes (Y < 0); the relevance of the local-in-space quasi-spherical approximation could lapse for significant bendings.

Moreover, while reducing the number of parametrized segments is not necessarily a critical point for the computation of the input impedance from profile data, it becomes one for e.g. impedance optimization tools or sound synthesis purposes. Hence, perspectives are twofolds. First, the models proposed in this paper could be used to build a toolbox dedicated to predict, estimate and optimize (w.r.t. to some computable criteria) immittances of acous-
tic bores with a smooth profile and help to design horn profiles. Second, it will be used to build digital waveguides (with Kelly-Lochbaum versions) based on decompositions into decoupled waves in Y-constant segments, for realistic real-time sound synthesis purposes.

Appendix

A1. Test profile and physical constants used in this paper

The academic flared profile R' used in sections 2-5 is chosen such that boundaries coordinates (z, R) matches with those of the trombone bell ($z_0 = 0, R_0 = 10.4 \cdot 10^{-3}$ m, $z^* = 568 \cdot 10^{-3}$ m, $R^* = 110 \cdot 10^{-3}$ m), with a null slope at $z = 0$. A simple polynomial model which satisfies these properties is given by

$$R' : z \in [0, z^*] \mapsto R_0 + (R^* - R_0) \left(\frac{z}{z^*} \right)^{10}. \quad (A1)$$

Moreover, physical constants are summarized in Table II. The air mass density and the sound celerity have been deduced from the calibration of the impedance sensor [55] for the measured trombone bell. They correspond to the temperature $T = 25.5^\circ$C. Other quantities are then extracted from [24].

A2. Bell profile of a Trombone Courtois 155R

The horn profile that is measured in this paper is described in Table III. The computed corresponding parameters of the segments are given in Table IV.

Acknowledgment

The authors thank P. Eveno and R. Caussé who have furnished the measurements of the trombone, F. Silva who has furnished the Matlab code for the computation of radiation impedances Z_2 and Z_3, J. Kergomard for his helpful advice, and J.-P. Dalmont for bibliographic information.

References

