Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

C. Dumat a,b,*, K. Quenea c, A. Bermondc, S. Toinen a, M.F. Benedettid

a Laboratoire de Biogéochimie des Milieux Continentaux, UMR CNRS 7618, UPMC, 75252 Paris cedex 05 France
b Laboratoire Environnement Ecotoxicologie, EA 3715 INP-ENSAT, Paris, France
c INA-PG, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
d Lab. de Géochimie des Eaux, Univ. Denis Diderot, UMR CNRS 7047, Paris, France

Abstract

Measure of δ^{13}C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic.

Keywords: Soil organic matter dynamic; Trace metal; Size fractionation; Stable isotopic carbon ratio

1. Introduction

With respect to the important environmental functions of soil organic matter (SOM): potential source or sink for greenhouse gases, contribution to soil aggregation, influence on soil fertility and bioactivity (Tiessen et al., 1994; Vanlauwe et al., 1999), the impact on its dynamics of some parameters like soil characteristics (Krull and Skjemstad, 2003), climate (Hevia et al., 2003) and agricultural practices (Pinheiro et al., 2004; Beare et al., 1994) are studied in detail.

Due to various anthropogenic activities, potentially toxic metals are accumulated in soils, with a risk of biota and
groundwater contamination. Among the various reactive soil constituents, SOM has a large sorption capacity towards metal ions (Benedetti et al., 1996; Sauve et al., 2000; Yin et al., 2002) and therefore metals often accumulate in the organic topsoils. Metals influence the soil biota in its diversity, abundance and activity (Mhatre and Pankhurst, 1997; Barajases Aceves et al., 1999). But nevertheless, their impact on the SOM turnover is not well documented.

SOM is composed of various organic constituents chemically heterogeneous (materials in various stages of decomposition for instance) with a large range of reactivity and turnover time in soil (Rethemeyer et al., 2004). In the literature, the affinity of metal ions towards humic substances is well described, but the reactivity with plant debris or bio-polymers is less documented (Spark et al., 1997). Moreover, the reactive components of the soil are in interaction (Franzlu"ebbers and
Arshad, 1997; Dumat et al., 1997). When plant litter compounds enter the soil, soil-inherent stabilisation mechanisms such as inclusion into aggregates or protection due to the interaction with soil minerals are operative (Sollins et al., 1996; Kaiser and Guggenberger, 2000). The interaction of SOM with the mineral surfaces may be responsible for the occurrence of a stable carbon pool in the fine clay fraction (Baldock and Skjemstad, 2000). Therefore the studies concerning the affinity of one extracted soil component for metals are open to criticism. Conversely, methods of soil particle-size fractionation can be used to assess the distribution of trace elements in soils (Ducarouire and Lamy, 1995). These size fractions can inform on the soil biogeochemistry and the evolution with time of soil components. Changes in the natural abundance of 13C in SOM over time can be used to identify sources of the organic C in soil (Schwartz et al., 1996) and to determine the turnover rate of SOM (Balesdent and Mariotti, 1996).

Three pseudogley brown leached soils under maize (the primary C₄ plants cultivated in temperate countries), with a decreasing gradient in total metal concentrations were collected near a smelter plant. On samples collected at various depths, size fractions were obtained and the following measurements were done: metal ions, organic carbon and nitrogen concentrations and δ^{13}C. The aim of the present work was to determine the effect of metals on the dynamics of SOM by comparing the patterns of the δ^{13}C signals for similar soils where maize replaced the previous C₃ vegetation and differing by their metal concentration levels.

2. Materials and methods

2.1. Soils characteristics and management

The 100 year old smelter (Metalurop) site is located near Evin-Malmaison (North of France). Dust emissions with high contents of Pb, Zn, Cd and Cu have contaminated the nearby agricultural field over tens of km². Dust particles were characterised by Sobanska et al. (1999) and consist mainly of sulphide and oxide metal ions. The soils classified as pseudogley brown leached soils (Morin et al., 1999) develop over quaternary clays (0.6–1.5 m) covering the Ostrinclay sand. Three soils were collected: M1, continuous maize (Zea mays L.) since 10 years and 1 km away from the smelter; M2, continuous maize since 14 years and 3 km away from the smelter and M3, continuous maize since 13 years and 10 km away from the smelter. The field sampling has been oriented to collect representative soil samples weighing 2–40 kg in closed bags. After mixing, all the samples were air dried and sieved at 2 mm.

For these three NPK fertilised soils, conventional tillage (ploughing to 30 cm, followed by superficial tillage and sowing) was performed and liming was done every few years. In preliminary experiments we checked that soil characteristics were homogeneous in the first 30 cm. Tillage favours the SOM mineralisation, because it breaks soil aggregates, increases aeration and thereby exposes SOM, which was previously protected within the aggregate structure (Pinheiro et al., 2004; Beare et al., 1994; Chenu, 1995). Arrouays et al. (1995) observed an increase of the ratio between labile and recalcitrant SOM when a soil under forest was cultivated.

For around 80 000 plants ha⁻¹ cultivated on the three soils (M₁, M₂ and M₃), the maize yield is 75 000–80 000 kg ha⁻¹. Before maize, previous cultivated C₃ plants were potatoes (50 000 kg ha⁻¹), peas (1 200 kg ha⁻¹) and beets (70 000 kg ha⁻¹). The type of land use is an important factor controlling organic matter storage in soils since it affects the amount and quality of litter input, the litter decomposition rates and the processes of organic matter stabilisation in soils (Shepherd et al., 2001; John et al., 2005).

One objective of the present work was to study soils contaminated by a real old industrial activity. Such long term continuous C₃ and then C₄ monoculture soils with similar characteristics (texture, land-use history, etc.) and differing only by metals concentrations are difficult to find. Therefore, it should be noted that soil M₁ is under maize monoculture only since 10 years. Moreover, for the fodder maize cultivated soil M₂, only maize roots were incorporated in the soil, whereas in M₁ and M₃, additionally the maize straw was incorporated in order to improve the soil characteristics.

2.2. Physical fractionation of the soil samples

Before particle size fractionation, an initial physical dispersion of the soil samples was performed by end-to-end shaking overnight in pure de-ionised water. The suspensions were then sieved through a series of grids (AFNOR French reference) with decreasing mesh size (2000, 1000, 500, 200 and 50 μm). Then the fractions (20 μm < size < 50 μm), (2 μm < size < 20 μm) and <2 μm were obtained by sedimentation. All the recovered particles were air dried at 60 °C, weighed, ground (200 μm) and homogenised. Particle size fractionation of soil samples resulted in the recovery of 98 ± 0.5% of the initial sample mass.

2.3. Measure of total metal concentrations

The total concentrations of Pb, Cd, Zn and Cu in the size fractions of the soil samples were analysed by inductively coupled plasma atomic emission spectrometry (ICP-AES) on a Jobin Yvon JYESS 4.03 apparatus, after a tri-acid (HF, HCl and HNO₃) digestion of the solid samples. A standard reference soil (GRX2) was used to control the digestion protocol and the measurements accuracies. All the results correspond to the mean of two replicates.

2.4. Organic carbon amounts and stable carbon isotopic signals (δ^{13}C)

All terrestrial plants discriminate against 13C (in favour of 12C) during photosynthesis, inducing differences between atmospheric CO₂ and the carbon isotopic composition of the plant tissues (Smith and Epstein, 1971). The degree of discrimination is dependant on the photosynthetic pathway of the plant (Elberinger et al., 1997). It increases from C₃ plants like maize (the metapholic pathway forms initial molecules with four carbon atoms) to C₄ plants. In natural ecosystems, the fractionation of the stable carbon during decomposition of the organic matter is small relative to the original fractionation during C fixation by plants (Peterson and Fry, 1987). Therefore in soils where the vegetation changes from C₃ to C₄ (or vice versa), the changes in the natural abundance of 13C in SOM over time can be used to identify sources of organic C in the soil (Schwartz et al., 1996) or to determine the turnover rate of SOM (Balesdent and Mariotti, 1996).

When C₄ plants grow on a soil that had always received C₃ plants, the δ^{13}C value of the SOM can be relevant to the proportion of the carbon from C₃ and C₄ plants to study the dynamic of the SOM (Balesdent and Mariotti, 1996). The effect of such a vegetation change on SOM isotope composition can be described as follows, with the indices 4 and 3 corresponding to the different photosynthetic pathway types. At the time of vegetation change (tₐ = 10, 13 and 14 years ago for M₁, M₂ and M₃, respectively), SOM have an isotopic composition δ_{iso} which is close to the composition of the original vegetation C₃. SOM progressively degrades and is partially replaced by SOM derived from the new vegetation C₄. At a given time t, the total carbon content (C) can be expressed as: $C = C_3 + C_4$. The isotopic composition of SOM (δ) is given by the following mixing equation:

$$\delta(C_3 + C_4) = \delta(C_3) + \delta(C_4)$$

Where C₃ stands for the amount of carbon derived from the C₃ old vegetation, δ_3 for the isotopic composition of that carbon, C₄ for the amount of carbon derived from the new vegetation C₄ (maize), and δ_4 for its isotopic composition. The fraction of new carbon (C₄) in the sample (F) can be obtained from successive samples taken on the same site. The kinetics of decay of the initial organic carbon (C₃) is equivalent to C(1 – F), whereas the kinetics of accumulation of the new carbon is equivalent to CF. Because the δ of the soil sample is linearly related to F, its change with time gives a direct expression of the turnover of soil carbon. δ_3 and δ_4 cannot be measured directly and must be estimated.
As there is evidence that the isotopic composition of SOM is only slightly different from that of the plant material from which it derives, most investigators using the natural 13C-labelling technique assume δ_4 is equivalent to the isotopic composition of the new vegetation C_4 or its litter ($\delta^{13}C_{\text{litter}}$), and δ_3 is equivalent to the initial $\delta^{13}C$ of the soil (at t_0) or to the isotopic composition of soil at a reference site kept under the initial vegetation ($\delta^{13}C_{\text{veg}}$). Under these assumptions:

$$F = (\delta - \delta^{13}C_{\text{veg}})/(\delta^{13}C_{\text{vegetation}} - \delta^{13}C_{\text{veg}}) = C_{\text{veg}}/C.$$

Organic C and N contents of soil samples were determined by dry combustion in a Carlo Erba NA 1500 CHN elemental analyser. Stable carbon isotope ratios of SOM and plants were measured on a Fisons SIRA 10 Isotope Ratio Mass Spectrometer. 13C natural abundance was expressed in δ units, by reference to the international standard PDB (marine carbonate: belemnite from the Pee Dee formation), according to the following equation:

$$\delta^{13}C_{\text{veg}} = \left[\frac{^{13}C/^{12}C}_{\text{sample}} - \frac{^{13}C/^{12}C}_{\text{PDB}}\right] \times 1000.$$

All samples were sieved to 1 mm, ground to 100 μm and homogenised in order to minimise the effects of sample heterogeneity. Organic carbon, nitrogen and δ^13C of the soil samples were measured in duplicate, with previous elimination of carbonates, by acidification. The 13C natural labelling technique requires information on 13C abundance of all plant materials entering the soil. Plants samples associated with the soils were collected, crushed, homogenised and analysed to obtain reference values for the stable (13C/12C) carbon isotopic analysis.

3. Results and discussion

3.1. General characteristics of the soil samples

Trace metals and organic carbon concentrations of the bulk samples (<2 mm) for each soil profile are reported in Table 1. All the results are given as the mean of the two replicates for each sample. The relative standard deviation of all the measured values never exceeded 7%. The organic carbon is mainly located in the topsoils (plough horizons), where most of the metals occur. The values for Pb, Zn, Cd and Cu concentrations are sometimes higher than the legal French limit NFU ‘44-041 (100, 300, 2 and 100 ppm for Pb, Zn, Cd and Cu, respectively). The depth versus concentration profiles depend on the metal. For Pb and Cu, below 25 cm, the metal concentrations are close to the geological background concentrations of the area estimated (Sterckeman et al., 2000). At the opposite, for the more mobile metal ions (Zn and Cd), the enhanced concentrations are found down to 50 cm.

As reported in Table 2, the pH$_{\text{water}}$ (between 6.4 for M1 and 7.5 for M3) and the CEC (between 13.9 C mol$^{-1}$ kg$^{-1}$ for M1 and 14.7 for M3) are quite similar for M1, M2 and M3, whereas the concentrations of the metals are significantly different and follow the sequence: $M_1 > M_2 > M_3$. Between 1.5% (for M1) and 2.7% (for M2), accordingly with John et al., 2005, the organic matter amount in the plough horizons is lower for the soil M1 where the straws are exported.

The size repartition as a function of depth for the three soils is reported in Table 3 (only the 0–30 cm depth was the studied for the soil M3). Soil texture is quite similar for M1, M2 and M3: clay (<2 μm) and silt particles (2 μm < fine silt <20 μm and 20 μm < coarse silt < 50 μm) dominate and that texture is relatively constant with the depth. But the soil M2 is significantly less clayed (9.1%) than the two others soils M1 (25.2%) and M3 (28.2%). According to Oades (1995), a high amount of clay decreases the biodegradation of SOM and therefore decreases the stock of carbon. Muller and Hopper (2004) concluded that the capacity of soil to protect organic matter against microbial decomposition depends on its clay content. Soil clay content is an abiotic factor defining the size of protected pools of organic matter in models of SOM turnover (Parton, 1996). Therefore, the protection of SOM could be lower for M2 in comparison with M1 and M3, and induces a higher turnover of the SOM in that soil.

3.2. The δ^{13}C constraints

Fig. 1 gives the δ^{13}C of the topsoils (0–30 cm) M1, M2 and M3 as a function of the size fraction. For the cultivated soils under maize M1 (10 years), M2 (14 years) and M3 (13 years), the δ^{13}C of the top bulk samples are respectively: $-22.8\%_{\text{iso}}$, $-22.3\%_{\text{iso}}$ and $-15.3\%_{\text{iso}}$. These data were compared with the δ^{13}C signals measured for plants sampled in the field and reference δ^{13}C values (Balesdent and Mariotti, 1996; Boutton, 1996) of C$_3$ and C$_4$ plant tissues and actual CO$_2$ reported in Table 4. First, the measure of δ^{13}C informs on the origin of the organic matter: a variable part of the organic matter of these soils comes from the incorporation of maize residues, and old C$_3$ organic matter is still remains.

In agreement with previous studies, a decrease of the δ^{13}C with size fraction is observed in relation to an increase of old SOM from C$_3$ origin. For 13 years of maize cultivation on an uncontaminated soil, Balesdent and Mariotti (1996) calculated turnover times of 4 ± 1.5 years and 13 ± 2 years, respectively, for the 2000–200 μm and the 200–50 μm fractions. In contrast, all fractions smaller than 10 μm exhibited an annual turnover time of 1.5 years...
rate of new organic matter input equal to 1.3 ± 0.4% of the carbon amount in the fraction. Monreal et al. (1997) reported in a long-term experiment with continuous maize cultivation that the mean turnover time of soil organic carbon was 14 years in macroaggregates, 61 years in microaggregates and 275 years in the fraction <50 μm.

The C4/C3 ratios were calculated from the δ13C values measured (as described in Section 2): \(C_4/C_3 = (\delta - \delta_{\text{refC}_3}) / (\delta_{\text{vegC}_4} - \delta_{\text{refC}_3}) \) with \(\delta_{\text{refC}_3} \) fixed to -27‰ and \(\delta_{\text{vegC}_4} \) fixed to -14‰. The results are reported in Fig. 2: C4/C3 as a function of the size fraction for the topsoils M1, M2 and M3. From that curve we can conclude that maize replaced C3 vegetation in various proportions on these three sites. The amount of C4 organic matter in the bulk fractions of the soils under maize follows the sequence M3 (\(C_4/C_3 = 0.9 \)) > M2 (0.4) > M1 (0.3). A low C4/C3 ratio (in comparison with the value 1) corresponds to a situation where a high amount of old (C3) soil organic matter is always present. The lowest value of the C4/C3 ratio for the contaminated soils (M1 and M2) in comparison with the uncontaminated soil M3 could be due to the influence of metals on the SOM turnover.

3.3. Organic carbon amounts for the soils as a function of depth and size fraction

Values of organic carbon of particle-size fractions as a function of depth are reported in Table 5 for M1, M2 and M3 soil. The organic carbon concentration decreases quickly with the depth: SOM is mainly concentrated in the first centimetres (0–30 cm). For the soil M1, between 0 and 180 cm depth, the clay fraction presents the highest organic carbon concentration: the ratio between clay and bulk fractions concentrations is between 1.1 and 2.5. The C/N ratio measured for M1 decreases with depth (between 12.5 at 0–30 cm and 7.7 at 170–180 cm for the bulk fraction) and size fraction; this trend is in agreement with a change in chemical nature of SOM (Besnard et al., 2001). For the soil M2, between 0 and 60 cm depth, the 1000–500 μm and the clay fractions have similar organic carbon concentrations, around two or three times more than in the bulk fraction. For the topsoil M3, the clay fraction presents the highest organic carbon concentration (around 2 times in comparison with the bulk) and then the concentration in the 1000–200 μm fraction is around two times higher in comparison with the bulk concentration.

3.4. Trace metal amounts for the soils as a function of depth and size fraction

The total metal concentrations as a function of depth and size fractions are given in Table 6 for the soils M1, M2 and M3. For the soil M1, whatever the depth and the nature of

Table 3

| Size repartitions (%) for each soil (M1, M2 and M3; sizes are expressed in μm) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Depth (cm) | 2000 > x > 1000 | 1000 > x > 500 | 500 > x > 200 | 200 > x > 50 | 50 > x > 20 | 20 > x > 2 | 2 μm > x |
| M1 | | | | | | | |
| 0–30 | 0.7 | 1.2 | 5.4 | 8.0 | 17.1 | 41.0 | 25.2 |
| 30–35 | 1.0 | 1.1 | 25.7 | 4.2 | 19.4 | 26.3 | 22.1 |
| 35–40 | 0.7 | 2.1 | 7.0 | 15.2 | 12.7 | 32.9 | 29.3 |
| 55–65 | 1.8 | 4.4 | 4.2 | 23.8 | 21.2 | 22.8 | 21.7 |
| 170–180 | 0.5 | 1.9 | 14.9 | 30.2 | 30.3 | 3.4 | 18.6 |
| M2 | | | | | | | |
| 0–30 | 2.30 | 3.70 | 10.00 | 23.30 | 16.40 | 32.30 | 9.10 |
| 30–40 | 0.70 | 1.60 | 17.50 | 26.00 | 19.50 | 25.60 | 8.80 |
| 40–50 | 0.40 | 0.60 | 3.00 | 18.60 | 28.10 | 39.70 | 8.30 |
| 50–62 | 1.20 | 3.70 | 1.30 | 22.60 | 26.70 | 29.90 | 13.00 |
| M3 | | | | | | | |
| 0–30 | 0.90 | 2.00 | 4.60 | 14.80 | 30.40 | 19.20 | 28.20 |

Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ13C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wastes of maize</td>
<td>-14.8 ± 0.5</td>
</tr>
<tr>
<td>C4 plants: maize, tropical grasses and gramineous</td>
<td>Mean of -14 (-17 to -10)</td>
</tr>
<tr>
<td>C3 plants: most other plants (trees, rice, wheat, etc.) and certain grass species</td>
<td>Mean of -27 (-32 to -22)</td>
</tr>
<tr>
<td>Present δ13C value of the atmospheric CO2</td>
<td>-8</td>
</tr>
</tbody>
</table>
the metal, the clay fraction is always the more enriched (between two and five times more in comparison with the bulk). The soil M2 is less contaminated in comparison with M1 and whatever the depth and the nature of the metal, the repartition among the size fractions is less heterogeneous. For lead and zinc, between 0 and 65 cm depth, the clay fraction is the more enriched and then the 1000–200 μm fraction. For Cu and Cd, the clay fraction is the only one significantly enriched in comparison with the bulk fraction. For the reference uncontaminated topsoil M3, the clay fraction presents the highest metal concentrations. Except for cadmium, the coarse 1000–200 μm fraction of each soil presents a slight enrichment in comparison with the bulk for Pb, Zn and Cu, but always remains much less contaminated than the clay fraction.

From the results presented in Table 6 (total metal concentrations) and in Table 3 (size repartition), we calculated the stocks of the various metals as a function of the size fraction for the topsoils (0–30 cm) M1, M2 and M3. These data are given in Fig. 3 for lead (a), zinc (b), copper (c) and cadmium (d). For these cultivated soils under maize, at each depth the stock of metals in the fine fraction is always higher than in the coarse fraction.

3.5. Influence of metals on the organic matter dynamics

Several mechanisms have been proposed to contribute to SOM stabilisation in soils (Sollins et al., 1996): SOM can be (1) biochemically stabilised through the formation of recalcitrant SOM compounds; (2) protected by intimate association with silt and clay particles; and (3) physically stabilised through aggregate formation. The calculated amount of C4 organic matter in the bulk fractions of the soils under maize follows the sequence M3 (C4/C = 0.9) > M2 (0.4) > M1 (0.3). These differences observed between the three soils in term of SOM turnover could perhaps result from the following parameters: (i) clay amount, (ii) age of the C4 culture and (iii) soil management (incorporation or not of the straws). Considering the individual influence of each parameter on the SOM turnover, the expected C4/C sequence is: (i) M2 (9% of clay) > M1 (25%) > M3 (28%), (ii) M2 (14 years) > M3 (13 years) > M1 (10 years) and (iii) M1 = M2 > M3. Therefore, if the clay amount was the main factor controlling the SOM of the studied soils, the C4/C ratio of M2 will be the highest. On the other hand, if the age of the C4 culture or soil management were the main factors controlling the SOM of the studied soils, the C4/C ratios of M2 and M3 will be quite similar and much higher than the C4/C ratio of M1. One hypothesis to explain the C4/C sequence observed for the three soils is that the SOM turnover was influenced by the metal contamination (with an intensity depending on the metal concentrations).

For the three soils studied, mainly the clay fraction, and to a lesser degree the particulate (1000–200 μm) SOM fraction, are both enriched with metals and organic carbon. Chemical extractions (with CaCl2, Na4P2O7, dithionite and HNO3) performed for a cultivated soil similar to M1 (Ponthieu, 2003), indicated that globally, SOM and metal oxides (Fe and Mn) control the speciation of metals. For Pb, EXAFS data confirmed that trend (Morin et al., 1999). SOM displays a high reactivity for metals, lead and copper in particular (Lamy et al., 1994; Harter and Naidu, 1995). These results for the atmospheric contaminated soils M1, M2 and M3, we can hypothesis that the metal–organic matter interaction
depends in two different ways on two size fractions: fraction <2 µm and fraction >50 µm. Plants are contaminated (soil–plant transfer or direct absorption by leaves) and after their death, a selective degradation takes place depending in particular on their metal content and the soil characteristics. Even in metal contaminated soils, biological activity occurred (Aoyama and Nagumo, 1997), but an alteration of the decomposition of organic matter was reported (Berg et al., 1991; Balaban et al., 1999; Cotrufo et al., 1995; Valsecchi et al., 1995), generally explained by an inhibition of microbial activity by bio-available toxic metals (Brookes, 1995; Mhatre and Pankhurst, 1997). Therefore an accumulation of highly contaminated coarse plant debris can result (Hughes et al., 1980; Harter and Naidu, 1995). However, the particulate

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>1000–500 µm</th>
<th>500–200 µm</th>
<th>200–50 µm</th>
<th>50–20 µm</th>
<th>20–2 µm</th>
<th><2 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Soil M1 [Pb] (mg kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–30</td>
<td>514.5 ± 15.4</td>
<td>450 ± 13.5</td>
<td>139.3 ± 4.1</td>
<td>115.5 ± 6.8</td>
<td>298.5 ± 11.8</td>
<td>1327.3 ± 39.5</td>
</tr>
<tr>
<td>30–35</td>
<td>83 ± 2.5</td>
<td>67.7 ± 2</td>
<td>32 ± 1</td>
<td>29 ± 1.65</td>
<td>83 ± 3.3</td>
<td>742 ± 2.5</td>
</tr>
<tr>
<td>35–40</td>
<td>77 ± 2.5</td>
<td>62.1 ± 1.8</td>
<td>24.3 ± 0.7</td>
<td>18.7 ± 1</td>
<td>67 ± 2.6</td>
<td>280 ± 8.4</td>
</tr>
<tr>
<td>55–65</td>
<td>68 ± 2.1</td>
<td>62.3 ± 1.9</td>
<td>24 ± 0.7</td>
<td>17 ± 1</td>
<td>45 ± 1.65</td>
<td>140 ± 7.3</td>
</tr>
<tr>
<td>170–180</td>
<td>24 ± 0.7</td>
<td>25.5 ± 0.65</td>
<td>21.3 ± 0.6</td>
<td>16.5 ± 0.95</td>
<td>25 ± 1</td>
<td>112 ± 3.4</td>
</tr>
<tr>
<td>(b) Soil M2 [Pb] (mg kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–30</td>
<td>273 ± 13.7</td>
<td>224.5 ± 18</td>
<td>207.5 ± 10.4</td>
<td>155 ± 5.4</td>
<td>163 ± 7.5</td>
<td>318 ± 15.9</td>
</tr>
<tr>
<td>30–35</td>
<td>165 ± 8.5</td>
<td>178 ± 14.2</td>
<td>142 ± 7</td>
<td>131 ± 4.7</td>
<td>142 ± 6.4</td>
<td>187 ± 9.5</td>
</tr>
<tr>
<td>35–40</td>
<td>86 ± 4.3</td>
<td>84 ± 6.7</td>
<td>75 ± 3.8</td>
<td>62 ± 2.25</td>
<td>65 ± 3.1</td>
<td>86 ± 4.5</td>
</tr>
<tr>
<td>55–65</td>
<td>89 ± 4.3</td>
<td>81 ± 6.5</td>
<td>49 ± 2.3</td>
<td>33 ± 1.2</td>
<td>25 ± 1.2</td>
<td>91 ± 4.7</td>
</tr>
<tr>
<td>(c) Topsoil M3 [Pb] (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57 ± 3.8</td>
<td>66 ± 3.3</td>
<td>49 ± 1.5</td>
<td>41 ± 0.8</td>
<td>39 ± 1.5</td>
<td>84 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>(Zn) (mg kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–30</td>
<td>11.7 ± 0.35</td>
<td>10 ± 0.3</td>
<td>5.8 ± 0.17</td>
<td>4.5 ± 0.15</td>
<td>14.4 ± 0.55</td>
<td>53.5 ± 1.6</td>
</tr>
<tr>
<td>30–35</td>
<td>8.3 ± 0.25</td>
<td>6 ± 0.18</td>
<td>4.1 ± 0.12</td>
<td>3 ± 0.18</td>
<td>8.1 ± 0.35</td>
<td>30 ± 0.9</td>
</tr>
<tr>
<td>35–40</td>
<td>5.1 ± 0.15</td>
<td>5.3 ± 0.15</td>
<td>1.9 ± 0.05</td>
<td>1 ± 0.06</td>
<td>3.8 ± 0.15</td>
<td>8 ± 0.3</td>
</tr>
</tbody>
</table>

...
organic matter fraction, the coarse sized SOM fraction composed by recently accumulated organic matter, is poorly associated with the soil mineral matrix and has a relatively rapid turnover in comparison with other SOM (Cambaradella and Elliott, 1992; Balesdent, 1996). Metals of the coarse fractions are progressively released during the decay of particulate organic matter. A part of these metals is then sorbed by the colloid organic matter of the clay fraction (high CEC and specific surface) (Besnard et al., 2001). According to Wattel-Koekkoek et al. (2003) and Gregorich et al. (2003), the interaction between SOM and polyvalent cations can induce SOM stabilisation.

Comparison of the C_4/C ratios for the 500–200 µm fraction (M1: 0.3, M2 0.45, M3 0.78) and the clay fraction (M1 0.08, M2 0.15, M3 0.3) of the three topsoils suggest that the transformation of coarse organic matter (from C$_4$ origin) into humic substances present in the clay fraction (Ballock et al., 1992) could be reduced by metals. Moreover, the distribution of recently incorporated organic carbon is not homogeneous in soil aggregates. For instance, Puget et al. (2000), found that maize residue carbon was enriched in particular in the particulate organic matter located in macro-aggregates. In the studied soils, metals are mainly concentrated in the clay fraction enriched by the old C$_3$ SOM. In contrast, the particulate organic matter is less contaminated. We can therefore conclude that the stabilisation effect of metals is stronger for the old C$_3$ SOM in comparison to the C$_4$ young SOM (mainly present in the labile coarser fractions). Consecutively to metal contamination, if the C$_4$ SOM is more degraded by the microorganisms than the C$_3$ SOM, then the C_4/C ratio decreases.

4. Conclusions

The determined sequence for the amount of C$_4$ organic matter in the bulk fractions: M$_3$ (0.9) > M$_2$ (0.4) > M$_1$ (0.3), cannot result only from the differences observed between the three soils in terms of clay amount, age of the C$_4$ culture and soil management. On the contrary, the lowest value of the C_4/C ratio for the contaminated soils (M$_1$ and M$_2$) in comparison with the uncontaminated soil M$_3$ could be due to the influence of metals on the SOM turnover.

The organic carbon is mainly located in the topsoils (plough horizons), where most of the metals occur. For the three studied soils, the clay fraction, and to a lesser degree (except for cadmium) the particulate (1000–200 µm) SOM fraction, are both enriched with metals and organic carbon. Chemical extractions performed for a cultivated soil similar to M$_1$ (Ponthieu, 2003), indicated that SOM and metal oxides control the speciation of metals.

The $\delta^{13}C$ results demonstrated differences in the nature of the SOM as a function of the size fraction and depth. The clay fraction is strongly enriched with old C$_3$ SOM in
comparison with the coarse fractions. The comparison of the C_4/C ratios for the 500–200 μm and the clay fractions of the three topsoils suggest that the transformation of coarse organic matters (from C_4 origin) into humic substances present in the clay fraction could be reduced by metals.

The less contaminated (in comparison with the clay fraction) particulate organic matter fraction composed by recently accumulated organic residue has a relatively rapid turnover in comparison with the clay SOM (Cambaradella and Elliott, 1992; Balesdent, 1996). Metals of the coarse fractions are progressively released during the decay of particulate organic matter. A part of these metals is then sorbed by the colloid organic matter of the clay fraction, therefore the clay fraction (enriched with old C_3 SOM) is progressively more contaminated and more stabilised (Wattel-Koekkoek et al., 2003; Gregorich et al., 2003). Consecutively to metal contamination, the proportion of the young C_4 organic matter relative to old C_3 (or C_4/C ratio) decreases because the young C_4 SOM (mainly present in the labile coarser fractions) is more easily degraded by the microorganisms than the C_3 SOM.

Understanding of mechanisms involved in SOM dynamic is an important challenge in regard to the global influence of that natural compartment. The size fractionation and profile sampling permit access to various pools of SOM with different stability and reactivity for pollutants. In order to better understand the mechanisms, we could test in detail, on various pieces of the same experimental long term site: the influence of the nature of the metal on the turnover of SOM; the effect of increasing metal concentrations; and investigate various metallic sources (influence of initial metal speciation).

Acknowledgements

The authors thank the French National Program Environment (PNSE) for financial support.

References

