Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 3791

To link to this article: doi:10.1016/j.jallcom.2009.05.107
URL: http://dx.doi.org/10.1016/j.jallcom.2009.05.107

Any correspondence concerning this service should be sent to the repository administrator:
staff-oatao@inp-toulouse.fr
Mechanochemical synthesis and characterization of nanodimensional iron–cobalt spinel oxides

E. Manova, D. Paneva, B. Kuneva, Cl. Estournès, E. Rivière, K. Tencheva, A. Léaustic, I. Mitov

Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia, Bulgaria
CNRS - Institut Carnot, CF - 31062 Toulouse, France
Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR8182, Equipe Chimie Inorganique, Université Paris-Sud XI, 91405 Orsay, France

A B S T R A C T

Iron–cobalt spinel oxide nanoparticles, Co$_x$Fe$_{3-x}$O$_4$ ($x = 1, 2$), of sizes below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. The phase composition and structural properties of the obtained materials have been investigated by means of X-ray diffraction, Mössbauer spectroscopy, infrared spectroscopy, temperature-programmed reduction and magnetization measurements. X-ray diffraction shows that after 1 h of mechanical treatment ferrites are formed. The measurement techniques employed indicate that longer milling induces an increase in crystal size while crystal defects decrease with treatment time. Magnetization and reduction properties are affected by the particles size, the iron/cobalt ratio and the synthesis conditions.

Keywords:
Nanostructured materials
Cobalt ferrite
Mechanochemical processing
Magnetization
Mössbauer spectroscopy

1. Introduction

Nowadays the synthesis of spinel ferrite nanoparticles has been intensively studied, because of their remarkable electrical and magnetic properties and wide practical application to information storage system, ferrofluid technology, magnetocaloric refrigeration, catalysis, and medical diagnostics. The principal role of the preparation conditions on the morphological and structural features of the ferrites have been discussed in several papers [1–6]. High-energy milling as a solid-state method of synthesis of nanodimensional materials has been the subject of considerable interest in recent years [7–10]. The highly non-equilibrium nature of the milling process creates the opportunities to prepare solids of improved and/or novel physical and chemical properties. Mechanical milling is a technique with an advantage that it can easily be operated and produces large amounts of nanostructured powders for a short period of time [11]. A mechanochemical route for the preparation of ferrites has been reported [12–15], however, synthesis was generally performed starting from a mixture of iron and other metal oxides. In our previous studies, we reported ferrites formation after a mechanical milling of the corresponding hydroxide carbonates [16,17]. Among spinel ferrites, cobalt ferrite CoFe$_2$O$_4$ is especially interesting because of the high cubic magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization. The properties of these ferrites are highly sensitive to the concentration of divalent metal ions, to substituting other metallic ions for the divalent ions and to the crystallite size [18–21]. Many synthesis strategies for preparing nanosized cobalt ferrite have been reported [21–25].

In this paper, for the first time we describe the mechanochemical synthesis of Co$_2$FeO$_4$. We also present the mechanochemical synthesis of CoFe$_2$O$_4$ under the same conditions as for Co$_2$FeO$_4$ and the characterization of the obtained materials using powder X-ray diffraction, Mössbauer spectroscopy, infrared spectroscopy, temperature-programmed reduction, and magnetic measurements of samples prepared at different milling times.

2. Experimental

The synthesis was performed by two steps: co-precipitation and mechanical milling of the co-precipitation precursors. The starting materials used were Fe(NO$_3$)$_3$·9H$_2$O powder (purity 99%), Co(NO$_3$)$_2$·6H$_2$O powder (purity 96%), and Na$_2$CO$_3$. In the co-precipitation processing route, a 0.5 M solution of metal salts containing Co and Fe were taken in a desired molar ratio: Fe/Co = 2 and 0.5. Mixtures of cobalt and iron hydroxide carbonates were formed when a 1 M sodium carbonate solution was added at pH 9. The precipitates were washed and dried at 348 K for 3 h. The as-obtained precursors (named as CoFe2HC and Co2FeHC) were milled using a Fritsch Planetary mill in a hardened steel vial together with 15 grinding balls having different diameters (from 3 to 10 mm). The ball-to-powder mass charge ratio was 10:1. The powders were milled for 1 and 3 h (samples denoted as CoFe2MS1, CoFe2MS3, Co2FeMS1, and Co2FeMS3, where MS indicates mechanochemical synthesis). Thermal synthesis was performed in two steps: co-precipitation (starting materials and procedure are described above) and subsequent annealing of the co-precipitation precursor at 773 and 573 K for CoFe$_2$O$_4$ (denoted as CoFe2TS, where...
3. Results and discussion

XRD patterns of the precursors and those of the samples obtained after different milling times as well as after thermal treatment are shown in Fig. 1. The patterns of the precursors are characteristic of layered double hydroxides (LDH) as found for pyroaurite (PDF 25-0521) and hydroxyltalcite (PDF 41-1428). After 1 h of milling the intensive lines of LDH disappeared and broad peaks of a new phase were registered. Their positions and intensities suggest the formation of a spinel phase with cubic structure. After 3 h of milling, the diffraction lines of the spinel phase (CoFe2O4 or Co2FeO4) are well defined. The average crystallites size (D), the degree of microstrain (ε) and the lattice parameter (a) of the studied cobalt ferrites were determined from the experimental XRD profiles (Table 1) by using the Williamson–Hall equation [27]:

\[\beta \cos \theta = \frac{0.9 \lambda}{D} + 4 \varepsilon \sin \theta \]

(1)

where β is the full width at half maximum (FWHM) of the XRD peaks, θ is the Bragg angle, λ is the X-ray wavelength, D is the crystallite size, and ε is the value of internal strain. By plotting the value of \(\beta \cos \theta \) as a function of 4sinθ the microstrain ε may be estimated from the slope of the curve, whereas the crystallite size D can be obtained from the intersection with the vertical axis. A well-defined effect of the crystal size increase and decrease in the crystal defects and lattice parameter with milling time is observed with the mechanochemically prepared materials.

![Fig. 1. Powder X-ray diffraction patterns of CoFe2O4 (a) and Co2FeO4 (b) precursors after different milling times and thermal treatment.](image)

Typical morphologies of the synthesized Co0.5Fe3-xO4 (x = 1, 2) particles visualized by TEM show that in all cases the prepared particles are nanosized, nearly spherical in shape and tend to agglomerate. As an example transmission electron micrographs of CoFe2TS and CoFe2MS3 are presented in Fig. 2. The average values of particles diameter estimated from the TEM images are in good agreement with those calculated from XRD results.

<table>
<thead>
<tr>
<th>Sample</th>
<th>D (nm)</th>
<th>ε x 10^3 (a.u.)</th>
<th>a (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe2MS1</td>
<td>3.4</td>
<td>8.97</td>
<td>8.42</td>
</tr>
<tr>
<td>CoFe2MS3</td>
<td>8.6</td>
<td>7.83</td>
<td>8.40</td>
</tr>
<tr>
<td>CoFe2TS</td>
<td>18.9</td>
<td>1.80</td>
<td>8.37</td>
</tr>
<tr>
<td>Co2FeMS1</td>
<td>2.7</td>
<td>11.50</td>
<td>8.39</td>
</tr>
<tr>
<td>Co2FeMS3</td>
<td>3.8</td>
<td>8.08</td>
<td>8.29</td>
</tr>
<tr>
<td>Co2FeTS</td>
<td>10.5</td>
<td>7.20</td>
<td>8.26</td>
</tr>
</tbody>
</table>
v_1 and v_2 positions in the transmission spectra are almost the same ($v_1 \approx 650 \text{ cm}^{-1}$, $v_2 \approx 560 \text{ cm}^{-1}$) independent of the preparation method. For all the CoFe$_2$O$_4$ samples, the v_1 and v_2 positions are around 590 and 385 cm$^{-1}$, respectively, with a small shift to higher wavenumbers for the mechanochemically obtained sample. This change in band position may be due to a change of the internuclear distance of M–O in the equivalent lattice sites. The observed vibration bands are in agreement with the results obtained by Wadorsn [29], Silva et al. [30], and Lefez et al. [31]. It can be seen that for iron rich spinels the main bands are shifted to lower frequencies, indicating weaker force constants for Fe–O bonds compared to Co–O. The bands of the thermally obtained samples narrowed due to the increase of crystallization.

TPR profiles of mechanochemically and thermally obtained materials are presented in Fig. 4 and show mainly one reduction peak with shape and maximum position depending on the iron/cobalt ratio. A broadening is observed for the iron-rich samples and a shift of the peak maxima towards higher temperatures compared to the cobalt-rich ones. For the studied iron–cobalt mixed oxides the elementary steps of Fe$^{3+}$, Co$^{3+}$, and Co$^{2+}$ reduction cannot be distinguished from the TPR curves, thus leading to the suggestion that the more easily reducible cations (in this case Co$^{3+}$ and Co$^{2+}$) promote the reduction of iron cations. CoFe$_2$MS$_3$ is reduced in the range of 400–750 K with peak maximum at 650 K and a shoulder at ca. 700 K. It is clearly seen that these two reduction peaks are shifted to a higher temperature with the thermally pre-
pared sample. This more difficult reduction can be due to increased crystallinity of the sample obtained by thermal treatment in comparison with the mechanochemically synthesised one. In the case of Co$_2$FeO$_4$, mainly one reduction peak is observed that can be due to a larger amount of cobalt present in the samples. As for CoFe$_2$O$_4$, the peak of the thermally synthesised sample is shifted to higher temperatures and the reason is probably a higher crystallinity.

Mössbauer spectroscopy was applied to gain information about the cationic occupations and/or different state distribution of iron ions in the studied ferrite materials. Fig. 5 shows RT Mössbauer spectra of samples taken from different steps of the processing route. The corresponding parameters determined from simulations of the spectra are listed in Table 2. The co-precipitated precursors exhibit a quadrupole doublet with IS = 0.34 mm/s, QS = 0.65–0.70 mm/s, indicating that the hydroxide carbonates are paramagnetic. As shown in Fig. 5b the spectra of Co$_2$FeO$_4$ appear always as doublets. The spectra of CoFe$_2$MS1 and CoFe$_2$MS3 are doublets, while the spectrum of CoFe$_2$TS contains only sextet components (Fig. 5a). It should be noted that reasonable data fitting of the Mössbauer spectrum of CoFe$_2$TS exhibiting magnetic splitting at RT could be obtained only when the B-site pattern is assumed to be a superposition of more than one sextet. In our case the hyperfine interaction of the B site could be fitted up to the four overlapping six-line pattern (belonging to high spin Fe$^{3+}$ ions with 0–3 Co nearest neighbours), which is in agreement with observations of other authors for ferrite samples [12,32]. The experimentally calculated intensity ratio of the B-site peaks is different from that calculated using a binomial distribution, proposed by Sawatzky et al. [33] and de Bakker et al. [34]. The reason for the observed difference is the method of preparation, which does not ensure a statistical equilibrium distribution of the metal ions in the ferrite sample. Additionally the size effect of small particles could increase the relative spectral area of the components having smaller H_{eff}. The results obtained after simulation of the Mössbauer spectrum indicate that the spinel structure of the thermally obtained compound is not completely inverse (of the order of 10% Co on A sites).

Taking into account the XRD data we suppose that the doublets observed in all milled samples and CoFe$_2$TS arise from Fe(III) ions in ultrafine ferrite particles exhibiting superparamagnetic behaviour [35]. To confirm the superparamagnetic behaviour magnetic measurements were carried out.

Room temperature isothermal magnetizations of the mechanochemically and thermally prepared phases are shown in Figs. 6 and 7, respectively. The magnetizations of all samples obtained after mechanochemical treatment are weak (a few emu/g). The small value of the measured magnetization could be related to strong magnetic anisotropy and possible local canting of magnetic ions due to the imperfect structure, and mainly to the surface effect of nanosize particles of large surface area. The absence of saturation in the magnetic field range explored, the “S” shape of the curves together with the lack of coercivity indicate the presence of small magnetic particles exhibiting superparamagnetic behaviour [36]. This particle size effect is in good agreement with the room temperature Mössbauer spectrometry where only doublet components are observed. The RT magnetization of CoFe$_2$TS is 63.2 emu/g and the coercive field – 1.5 kOe. Cobalt ferrite bulk material (CoFe$_2$O$_4$) is known to be a ferrimagnetic material with very high cubic magnetocrystalline anisotropy.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Compounds</th>
<th>IS (mm/s)</th>
<th>QS (mm/s)</th>
<th>H_{eff} (T)</th>
<th>FWHM (mm/s)</th>
<th>G (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe2MS1</td>
<td>Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.34</td>
<td>0.67</td>
<td>–</td>
<td>0.48</td>
<td>100</td>
</tr>
<tr>
<td>CoFe2MS3</td>
<td>Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.34</td>
<td>0.65</td>
<td>–</td>
<td>0.57</td>
<td>100</td>
</tr>
<tr>
<td>CoFe2TS</td>
<td>Sx 1 – Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.28</td>
<td>0.00</td>
<td>49.0</td>
<td>0.41</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Sx 2 – Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.37</td>
<td>0.00</td>
<td>52.4</td>
<td>0.42</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Sx 3 – Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.37</td>
<td>0.00</td>
<td>50.7</td>
<td>0.42</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Sx 4 – Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.37</td>
<td>0.00</td>
<td>46.7</td>
<td>0.42</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sx 5 – Fe$^{3+}$, CoFe$_2$O$_4$</td>
<td>0.37</td>
<td>0.00</td>
<td>43.2</td>
<td>0.42</td>
<td>8</td>
</tr>
<tr>
<td>Co2FeMS1</td>
<td>Fe$^{3+}$, Co$_2$Fe$_3$O$_4$</td>
<td>0.34</td>
<td>0.70</td>
<td>–</td>
<td>0.49</td>
<td>100</td>
</tr>
<tr>
<td>Co2FeMS3</td>
<td>Fe$^{3+}$, Co$_2$Fe$_3$O$_4$</td>
<td>0.33</td>
<td>0.66</td>
<td>–</td>
<td>0.47</td>
<td>100</td>
</tr>
<tr>
<td>Co2FeTS</td>
<td>Fe$^{3+}$, Co$_2$Fe$_3$O$_4$</td>
<td>0.32</td>
<td>0.73</td>
<td>–</td>
<td>0.47</td>
<td>100</td>
</tr>
</tbody>
</table>

IS: isomer shift relative to metallic α-Fe at RT; QS: quadrupole splitting for doublets or quadrupole shift for sextets; H_{eff}: effective magnetic field.
leading to high theoretical coercivity: 25.2 and 5.4 kOe at 5 and 300 K, respectively, and a saturation magnetization of 93.9 and 80.8 emu/g at 5 and 300 K, accordingly [37,38]. However, the values of the magnetic properties of CoFe$_2$TS are lower than the values of pure crystalline cobalt ferrite indicating that either the objects formed are core/shell particles with spin-glass-like surface layer [39] or that some of the ultrafine particles with superparamagnetic behaviour remain intact. Our values are in accordance with results obtained with nanocrystalline CoFe$_2$O$_4$ of similar grain size [40]. Concerning Co$_2$FeO$_4$, it is important to note that saturation of the magnetization is never reached (in the magnetic field range used (5 T)). The absence of coercivity, remanence, and saturation at 295 K (Figs. 6b and 7b) can be explained by size effects and suggests that this material behaves as a superparamagnetic at room temperature.

Magnetization measurements as a function of applied temperature have been performed and as an example, the FC-ZFC curves of CoFe$_2$MS3 and Co$_2$FeMS1 are presented in Fig. 8. The blocking temperature (TB) associated with the maximum in the zero field cooling magnetization curve increases with the milling time and the iron content (170 and 210 K for CoFe$_2$MS1 and CoFe$_2$MS3; 75 and 110 K for Co$_2$FeMS1 and Co$_2$FeMS3, respectively). TB can be associated with an average size of the particles. The increase of the particle size is confirmed by the increase of the blocking temperature with
mechanoochemical treatment time and is in accordance with the XRD, TEM, and Mössbauer spectroscopy results. The point at which ZFC-FC starts to diverge is usually associated with the blocking temperature of the larger particles. The difference between these two temperatures reflects the distribution in the particle size. Thus, the cobalt rich sample exhibits a wide particles size distribution with the larger particles magnetically blocked at room temperature.

4. Conclusions

High-energy ball milling of layered cobalt–iron hydroxide carbonates results in the formation of nanocrystalline cobalt ferrites, where the particle size is below 10 nm and can be controlled by the treatment time. The measurement techniques employed indicate that the crystal size increases while the number of defects decreases with treatment time. The magnetic and reduction properties of the obtained materials are affected by the synthesis conditions, with treatment time. The measurement techniques employed indicate where the particle size is below 10 nm and can be controlled by the treatment time. The measurement techniques employed indicate that the crystal size increases while the number of defects decreases with treatment time. The magnetic and reduction properties of the obtained materials are affected by the synthesis conditions, with treatment time. The measurement techniques employed indicate where the particle size is below 10 nm and can be controlled by the treatment time. The measurement techniques employed indicate that the crystal size increases while the number of defects decreases with treatment time. The magnetic and reduction properties of the obtained materials are affected by the synthesis conditions, with treatment time.

Acknowledgements

The authors thank the National Science Fund of Bulgaria for financial support through Projects X-1504/05 and Rila4–412 (DO 02-29/2008).

References

Fig. 8. ZFC-FC measurements of CoFe2M3S3 (a) and Co2FeM5S1 (b).