
ofchangeistheresultofapplyinglocallyasimilaritymeasure

tothetwoimages.Thissimilaritymeasureisusuallychosenas

thecorrelationcoefÞcientorotherstatisticalfeatureinorderto

dealwithnoisydata.

Theestimationofthesimilaritymeasureisperformedlocally

foreachpixelposition.Sinceastatisticalestimationhastobe

performed,andonlyonerealizationoftherandomvariableis

available,theimagesaresupposedtobelocallystationaryand

theergodicityassumptionallowstomakeestimatesusingsev-

eralneighborpixels.Thisneighborhoodistheso-calledestima-

tionwindow.Inorderforthestationarityassumptiontohold,

thisestimationwindowhastobesmall.Ontheotherhand,ro-

buststatisticalestimatesneedahighnumberofsamples.There-

detectioninSARimagesisalsoinvestigated.

Thispaperisorganizedasfollows.SectionIIrecallsimpor-

tantresultsonmonosensormultivariategammadistributions

(MoMGDs).SectionIIIdeÞnesthefamilyofMuMGDsconsid-

eredforchangedetectioninmultisensorSARimages.Section

IVstudiesthemaximumlikelihoodestimator(MLE),theinfer-

encefunctionformargins(IFM)estimator,andtheestimatorof

momentsfortheunknownparametersofMuMGDs.SectionV

presentssomesimulationresultsillustratingtheperformanceof

MuMGDsforparameterestimationandchangedetectionon
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By setting for in (9), we observe that the random
variable is distributed according to a univariate gamma dis-
tribution with scale parameter and shape parameter , i.e.,

. Thus, all margins of have different shape pa-
rameters in the general case. Note that the definition above as-
sumes that the first univariate margin has a shape parameter

smaller than all other shape parameters without loss
of generality. Note also that an MuMGD reduces to an MoMGD
for .

A multisensor bivariate gamma distribution (MuBGD) corre-
sponds to the particular case and is defined by its Laplace
transform

(9)

with the following conditions:

(10)

In the bidimensional case, the conditions (10) ensure that (9) is
the Laplace transform of a probability distribution defined on

.

B. MuBGD Pdf

According to (7), a vector distributed ac-
cording to an MuBGD (i.e., ) is constructed from
a random vector distributed according to an
MoBGD whose pdf is denoted as and a random variable

independent on with pdf . By using
the independence assumption between and , the density of

can be expressed as

(11)

Straightforward computations leads to the following expression:

(12)

where and where is the so-called Horn
function. The Horn function is one of the twenty convergent
confluent hypergeometric series of order two, defined as [9]

(13)

where is the Pochhammer symbol such that
and for any positive integer .
It is interesting to note that the relation

allows one to show that
the MuBGD pdf defined in (13) reduces to the MoBGD pdf (6)
for .

C. MuBGD Moments

The moments of can clearly be obtained from the moments
of and . This section concentrates on MuBGDs defined by

, where is an MoBGD

with mean , correlation coefficient and shape pa-
rameter , and is a univariate gamma distribution with mean

and shape parameter . Using the independence prop-
erty between and , the following results can be obtained:

(14)

for all . The moments of an MoBGD were derived
in [6]

(15)

for all . Expressions (14) and (15) can be used
to derive analytical expressions of MuMGD moments. For in-
stance, the first and second order moments can be written as

It is interesting to note that the conditions (3) ensure that the
correlation coefficient satisfy the constraint

. In other words, the normalized correlation coefficient
defined by

is such that . As explained in Section
II-B, the random variables and are independent if and
only if . Since is independent from and

, a necessary and sufficient condition for the margins of an
MuBGD and to be independent is . Note,
finally, that for known values of the shape parameters and

, an MuBGD is fully characterized by the parameter vector
, since and are re-

lated by a one-to-one transformation.

IV. PARAMETER ESTIMATION FOR MUBGDS

This section studies different methods for estimating the pa-
rameters of MuBGDs.2 The following notations are used in the
rest of this paper:

inducing . Note that the parameters
and can be expressed as functions of as follows

2The results proposed here could be used to estimate the parameters of
MuMGDs by using the concept of composite likelihood. The interested reader
is invited to consult [10], [11], and references therein for more details.
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and . Note
also that the parameters and are assumed to be known in
this paper, as in most practical applications. In the case where

and are unknown, these parameters should be included in
and estimated jointly with and .3

A. Maximum Likelihood (Ml) Method

1) Principles: The ML method can be applied to since a
closed-form expression of its pdf is available. After removing
the terms which do not depend on, the log-likelihood function
of can be written

(16)

where
are the sample means of and and deÞned

previously can be expressed as function ofusing the relation
. By differentiating the log-like-

lihood with respect to (wrt) , the MLE of is obtained as a
solution of

where is the so-called score function,
or equivalently by solving

(17)

(18)

(19)

with

3The interested reader is invited to consult [12] for a related example where
the shape parameter of a mono sensor multivariate gamma distribution(q =
q = q) was estimated from mixed Poisson data. This section addresses the
problem of estimating the unknown parameter vector��� from n vectorsYYY =
(YYY ; . . . ; YYY ), whereYYY = ( Y ; Y ) is distributed according to an MuBGD
with parameter vector���

The MLE of can be obtained by summing (17)Ð(19) and
replacing the value of in (18)

(20)

The MLEs of and are obtained by replacing by
in (16) and by maximizing the resulting log-likelihood

wrt and . This last maximization is
achieved by using a constrained ( and ) quasi-
Newton method, since an analytical expression of the log-like-
lihood gradient is available.4 Some elements regarding the nu-
merical evaluation of the Horn Function are detailed in Appen-
dices I and II. It is important to note that the MLE of differs
from in the general case.5 Finally, the MLE of the correlation
coefÞcient is deduced by functional invariance as

2) Performance:The properties of the ML estimator
can be easily derived from the properties of the univariate
gamma distribution . This estimator is obviously un-
biased, convergent and efÞcient. However, the performance of

and are more difÞcult to study. Of course, the MLE
is known to be asymptotically unbiased and asymptotically
efÞcient, under mild regularity conditions. Thus, the mean
square error (MSE) of the estimates can be approximated for
large data records by the CramerÐRao lower bound (CRLB).
For unbiased estimators, the CRLB is obtained by inverting the
following Fisher information matrix

Thus, the computation ofrequires to determine the negative
expectations of second-order derivatives of wrt
and in (16). Closed-form expressions for the elements ofare
difÞcult to obtain because of the term . In such situation,
it is very usual to approximate the expectations by using Monte
Carlo methods. This will provide interesting approximations of
the ML MSEs (see simulation results of Section V).

B. Inference Function for Margins (IFM)

1) Principles: IFM is a two-stage estimation method whose
main ideas can be found for instance in [14, Ch. 10] and are
summarized below in the context of MuBGDs.

¥ Estimate the unknown parameters and from the
marginal distributions of and . This estimation is con-
ducted by maximizing the marginal likelihoods
and wrt and , respectively.

¥ Estimate the parameter by maximizing the joint likeli-
hood wrt . Note that the parame-
ters and have been replaced in the joint likelihood
by their estimates resulting from theÞrst stage of IFM.

4The negative log-likelihood function has a unique minimum with repect to
r in all pratical cases. The reader is invited to consult [13] for discussions and
simulations results.

5There is no closed-form expression for the MLE ofm contrarily tom .
Indeed, there is some kind of dissymmetry betweenY andY inherent to the
proposed model (7). This dissymmetry will disappear in the method based on
the inference for margins studied in section B.




