OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Dynamics of bidisperse suspensions under Stokes flows: Linear shear flow and Sedimentation

Abbas, Micheline and Climent, Eric and Simonin, Olivier and Maxey, Martin R. Dynamics of bidisperse suspensions under Stokes flows: Linear shear flow and Sedimentation. (2006) Physics of Fluids, vol. 1 (n° 12). 121504/1-121504/20. ISSN 1070-6631

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1063/1.2396916


Sedimenting and sheared bidisperse homogeneous suspensions of non-Brownian particles are investigated by numerical simulations in the limit of vanishing small Reynolds number and negligible inertia of the particles. The numerical approach is based on the solution of the three-dimensional Stokes equations forced by the presence of the dispersed phase. Multi-body hydrodynamic interactions are achieved by a low order multipole expansion of the velocity perturbation. The accuracy of the model is validated on analytic solutions of generic flow configurations involving a pair of particles. The first part of the paper aims at investigating the dynamics of monodisperse and bidisperse suspensions embedded in a linear shear flow. The macroscopic transport properties due to hydrodynamic and non hydrodynamic interactions (short range repulsion force) show good agreement with previous theoretical and experimental works on homogeneous monodisperse particles. Increasing the volumetric concentration of the suspension leads to an enhancement of particle fluctuations and self-diffusion. The velocity fluctuation tensor scales linearly up to 15% concentration. Multi-body interactions weaken the correlation of velocity fluctuations and lead to a diffusion like motion of the particles. Probability density functions show a clear transition from Gaussian to exponential tails while the concentration decreases. The behavior of bidisperse suspensions is more complicated, since the respective amount of small and large particles modifies the overall response of the flow. Our simulations show that, for a given concentration of both species, when the size ratio varies from 1 to 2.5, the fluctuation level of the small particles is strongly enhanced. A similar trend is observed on the evolution of the shear induced self-diffusion coefficient. Thus for a fixed and total concentration, increasing the respective volume fraction of large particles can double the velocity fluctuation of small particles. In the second part of the paper, the sedimentation of a single test particle embedded in a suspension of monodisperse particles allows the determination of basic hydrodynamic interactions involved in a bidisperse suspension. Good agreement is achieved when comparing the mean settling velocity and fluctuations levels of the test sphere with experiments. Two distinct behaviors are observed depending on the physical properties of the particle. The Lagrangian velocity autocorrelation function has a negative region when the test particle has a settling velocity twice as large as the reference velocity of the surrounding suspension. The test particle settles with a zig-zag vertical trajectory while a strong reduction of horizontal dispersion occurs. Then, several configurations of bidisperse settling suspensions are investigated. Mean velocity depends on concentration of both species, density ratio and size ratio. Results are compared with theoretical predictions at low concentration and empirical correlations when the assumption of a dilute regime is no longer valid. For particular configurations, a segregation instability sets in. Columnar patterns tend to collect particles of the same species and eventually a complete separation of the suspension is observed. The instability threshold is compared with experiments in the case of suspensions of buoyant and heavy spheres. The basic features are well reproduced by the simulation model.

Item Type:Article
Additional Information:Thanks to AIP editor. The original PDF of the article can be found at Physics of fluids website : http://pof.aip.org/
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Paul Sabatier-Toulouse III - UPS (FRANCE)
French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Other partners > Brown University (USA)
Laboratory name:
Deposited By: Eric Climent
Deposited On:19 Jun 2009 09:18

Repository Staff Only: item control page