Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID : 2404

To link to this article:
URL : http://dx.doi.org/10.1016/j.intermet.2006.10.054

To cite this version: Peçanha, Rockfeller Maciel and Ferreira, Flávio and Carvalho Coelho, Gilberto and Nunes, Carlos Angelo and Sundman, B. (2007) Thermodynamic modeling of the NbeB system. Intermetallics, vol. 15 (n° 8). pp. 999-1005. ISSN 0966-9795

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@inp-toulouse.fr
Thermodynamic modeling of the Nb–B system

Rockfeller Maciel Peçanha a, Flávio Ferreira b,*, Gilberto Carvalho Coelho a, Carlos Angelo Nunes a, Bo Sundman c

a Departamento de Engenharia de Materiais, DEMAR-EEL-USP, CP116, 12600-970, Lorena, SP, Brazil
b Escola de Engenharia Industrial Metalúrgica de Volta Redonda—UFF—TMC, Av. dos Trabalhadores, 420, CEP 27255-125, Volta Redonda, RJ, Brazil
c Division of Physical Metallurgy, Royal Institute of Technology, S-10044, Stockholm 70, Sweden

Abstract

In the present work, the Nb–B binary system was thermodynamically optimized. The stable phases in this system are BCC (niobium), Nb₃B₂, Nb₅B₆, NbB, Nb₃B₄, NbB₂, B (boron) and liquid L. The borides Nb₃B₂, NbB, Nb₅B₆ and NbB₂ as solutions, using the sublattices model, with their excess terms described by the Redlich–Kister polynomials. The Gibbs energy coefficients were optimized based on the experimental values of enthalpy of formation, low temperature specific heat, liquidus temperatures and temperatures of invariant transformations. The calculated Nb–B diagram reproduces well the experimental values from the literature.

Keywords: A. Intermetallics, miscellaneous; B. Phase diagrams; B. Thermodynamic and thermochemical properties; E. Phase diagram, prediction

1. Introduction

The development of new high-temperature materials is essential for future generations of both aircraft engines and land-based gas turbines. Nb-silicide-based composites are potential alloy candidates because they present a good balance of properties required for high-temperature applications [1,2]. Among the information for alloy design and potential evaluation for use as structural material, the phase equilibrium is one of the most important. The present thermodynamic optimization of the Nb–B system is part of a research project, which studies the phase relations in the Nb-rich corner of the Nb–Si–B system.

The currently accepted Nb–B phase diagram [3], shown in Fig. 1, presents the following stable phases: BCC (niobium), Nb₃B₂, NbB, Nb₅B₆, NbB₂, B (boron) and liquid L. This phase diagram is mainly based on the experimental data of Nowotny et al. [4] and shows some divergences with the diagram proposed by Rudy and Windisch [5], which is shown in Fig. 2. The main divergences are (i) Massalski proposes a peritectic formation for the Nb₅B₆, while Rudy and Windisch suggest that this phase is formed peritectoidically; (ii) Massalski proposes the stability of Nb₅B₆, based on results reported by Bolmgren and Lundström [6], while Rudy and Windisch do not mention the presence of this phase in the microstructures of their samples; (iii) Massalski proposes a homogeneity range for NbB₂ much wider than the 65–70 at% B reported in Refs. [5,7–9]; and (iv) Massalski suggests the composition of the liquid in the B-rich eutectic to be located at approximately 90 at% B, while Rudy and Windisch propose 98 at% B. To solve these discrepancies, an experimental re-investigation of the Nb–B system was performed by Borges et al. [10,11], which confirmed the stability of Nb₅B₆ and the phase relation in the Nb-rich region proposed by Rudy and Windisch, except for the composition of the liquid in

* Corresponding author. Tel.: +55 24 3344 3013; fax: +55 24 3344 3020. E-mail address: flavio@metal.eeimvr.uff.br (F. Ferreira).

doi:10.1016/j.intermet.2006.10.054
the Nb-rich eutectic, located at 16 at% B instead of at 19 at% B. The composition of the B-rich eutectic was informed to be above 96 at% B.

The experimental phase diagram data available in the literature for this system are (i) the congruent melting points of NbB$_2$ [4,5,12] and NbB [4,5]; (ii) the temperatures and compositions of the phases for the invariant reactions [4,5,10]; and (iii) the solubility range of the phase NbB$_2$ [4,5,7,9,10].

The thermodynamic data available for this system are (i) the entropy of NbB$_2$ [13], Nb$_3$B$_2$, NbB and Nb$_3$B$_4$ phases [14]; (ii) the enthalpy of formation of NbB$_2$ [15–19]; and (iii) the temperature dependence of the enthalpy, $H(T) - H(298 \text{ K})$, for the phases Nb$_5$B$_6$, NbB, Nb$_3$B$_4$ and NbB$_2$ in the 1200–2350 K range [20].

The only optimization of the Nb–B system available in the literature is due to Kaufman et al. [21]. In the modeling of the Me–Si–B systems, we have been using the Stable Element Reference (SER), adopted by the SGTE (Scientific Group Thermodata Europe) in their databases, which is not compatible with the reference state adopted by Kaufman. Furthermore, in Kaufman’s work on the Nb–B system: (i) all solid phases are modeled as stoichiometric; (ii) the stability of the phase Nb$_5$B$_6$ is not considered; (iii) NbB is predicted to be formed peritectically; and (iv) more recent experimental information [6,9–11,19] were not considered. Therefore, the aim of the present work is to provide a new set of thermodynamic coefficients for the Nb–B system.

2. Thermodynamic models

The Nb–B phase diagram proposed by Rudy and Windisch (Fig. 2) is plotted with all intermetallic phases showing some solubility of Nb and B in their crystal structures. Except for the NbB$_2$, there are no quantitative experimental evidences for these phase boundaries, which would allow their modeling as solution phases. Therefore, the borides Nb$_3$B$_2$, NbB, Nb$_3$B$_4$ and NbB$_2$ and the B (boron) were modeled as stoichiometric phases and the liquid L, BCC (niobium) and NbB$_2$ as solution phases, using the Compound Energy Formalism (CEF).

The CEF is described in detail by Sundman and Ågren [22] as well as by Hillert [23]. It allows an adequate description of the thermodynamic properties of phases taking the existence of sublattices into account. The sublattices are basically given by the different Wyckoff positions of the atoms in the crystal structure of the phase. Empty positions are also considered as sublattices if they are eventually occupied by atoms such as in interstitial solutions. A helpful reference for modeling intermetallic compounds is the compilation of Villars and Calvert [24]. Table 1 shows the crystal structure data of the stable solid phases in the Nb–B system, in their ideal stoichiometry [24,25]. A phase is modeled as a stoichiometric compound when it exists in a very limited composition range,
for example close to its ideal stoichiometry, and therefore one may consider each sublattice being always occupied by a unique component. When a phase exists over a not negligible composition range, the knowledge of the specific lattice defect structure is essential for the correct choice of the model, which is the case of the NbB₂ compound in the present work. In such a case, a random mixture of species, which includes vacancies, occurs in at least one of the phase sublattices. Stable or metastable end-member compounds are formed in the limiting cases of occupation of the solution sublattices. Considering the case where the species are not complex constituents such as ions, the Gibbs energy for each individual phase \( G_m^f \), is described by the CEF with the following equation expressed per mole of formula unity [23] (note that the upper suffix “s” is not a power and its meaning will become clear later in the text):

\[
G_m^f = \sum_s n^s (1 - y_{Va}^s) \sum_i \chi_i^s G_{\text{st}}^i + \sum_{\text{end}} \Delta y^s_i G_{\text{end}}^\phi \Pi y_i^s + RT \sum_s n^s \sum_i y_i^s \ln(y_i^s) + E G_m^\phi
\]  

which can also be written in the form as shown below [22]

\[
G_m^f = \sum_{\text{end}} \alpha G_{\text{end}}^\phi \Pi y_i^s + RT \sum_s n^s \sum_i y_i^s \ln(y_i^s) + E G_m^\phi
\]

with

\[
\alpha G_{\text{end}}^\phi = \Delta y^s_i G_{\text{end}}^\phi + \sum_i \alpha G_{\text{st}}^i n^s
\]

The symbols in Eqs. (1)—(3) have the following meaning:

- \( n^s \) is the stoichiometric coefficient of sublattice “s”;
- \( y_{Va}^s \) is the site fraction of vacancy in the sublattice “s”;
- \( x_i \) is the mole fraction of component “i” in the compound;
- \( \alpha G_{\text{st}}^i \) is the Gibbs free energy of component “i” at standard state;
- \( \text{end} \) is an array with “end-member compounds”;
- \( \Delta y^s_i G_{\text{end}}^\phi \) is the Gibbs free energy of formation of an end-member of phase \( \phi \);
- \( y_i^s \) is the site fraction of component “i” in the sublattice “s”;
- \( E G_m^\phi \) is the excess Gibbs energy of phase \( \phi \).

The summations are performed for arrays whose elements are sublattices (s), components (i) or end-members (end), and the product \( \Pi y_i^s \) contains the site fractions corresponding to the components present in each end-member. As mentioned before, the end-members are formed when each sublattice is occupied by a single component at a time. Therefore, the first right-hand term of Eq. (2) describes a surface of reference in which the interaction energies between neighboring components in different sublattices are essentially considered. The second right-hand term of Eq. (2) accounts for the ideal entropy of mixing, under the assumption of random mixing of components within the solution sublattices. The excess term basically takes into account the interaction energies between different components in the solution sublattices, which are given by interaction parameters \( L_{i,j}^s \). A general expression for the excess term is given in Ref. [22]. For the present

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Crystal structure data of the stable solid phases in the Nb–B system [24,25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Prototype</td>
</tr>
<tr>
<td>BCC</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb₃B₂</td>
<td>U₃Si₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NbB</td>
<td>CrB</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb₃B₆</td>
<td>V₃B₆</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb₃B₄</td>
<td>Ta₃B₄</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NbB₂</td>
<td>AlB₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Rhom</td>
<td>B</td>
</tr>
</tbody>
</table>

^a ip stands for octahedral interstitial positions.

^b Data taken from Ref. [25].

^c Wyckoff positions and their coordinates were intentionally suppressed for B-Rhom. The complete list can be found in Ref. [24].
work, it is sufficient to take the case of interaction energies within “excess solutions” formed under the consideration of mixing of different components “i1” and “i2” in each solution sublattice at a time while the other sublattices are occupied by single components “i”. Using Redlich–Kister polynomials for the interaction parameters [26], the excess term may be described by:

\[ \varepsilon G_m^b = \sum_{xx} \Pi_i^b \sum_i \varepsilon_i^b (\chi_{i1}^b - \chi_{i2}^b) \]  

(4)

where \( \varepsilon_i^b \) is the interaction parameter of order “\( i \)”. The first summation is performed for an array whose elements are all possible “excess solutions” (xs) and the product \( \Pi_i^b \) contains the site fractions corresponding to the components present in each “excess solution”.

2.1. Gibbs energy for pure components

The temperature dependent Gibbs energy of each pure element is described by an equation of the general form:

\[ \alpha G_m^b = \theta_{SER}^i + a + bT + cT \ln(T) + dT^2 + eT^3 + fT^{-1} \]  

(5)

where \( \theta_{SER}^i \) is the enthalpy of stable element “\( i \)” at 298.15 K.

2.2. Solution phase liquid

The liquid phase was modeled as a single sublattice substitutional solution. Therefore, the site fractions in Eq. (2) are equivalent to the molar fractions and the end-members are coincident with the pure elements, i.e. \( \alpha G_{end1}^L = \alpha G_{Nb}^L \) and \( \alpha G_{end2}^L = \alpha G_{B}^L \), yielding the following expression for its Gibbs free energy:

\[ \alpha G_m^L = \chi_{Nb}^{BCC} \alpha G_{Nb}^{BCC} + \chi_{B}^{BCC} \alpha G_{B}^{BCC} + RT \left[ \chi_{Nb} \ln(\chi_{Nb}) + \chi_{B} \ln(\chi_{B}) \right] 

+ \chi_{Nb} \frac{\theta_{f}^{L}}{C_0} + \chi_{B} \frac{\theta_{f}^{L}}{C_0} + \chi_{Nb} \frac{\theta_{f}^{L}}{C_0} \]  

(6)

2.3. Solution phase BCC

The Body Centered Cubic (BCC) crystal structure may be modeled as a phase with two sublattices, namely the sublattice corresponding to Wyckoff positions 2a (substitutional) and that corresponding to octahedral interstitial positions 6b (Table 1). Due to compatibility reasons within thermodynamic databases, this model is usually adopted even if no interstitial solution is formed in the specific system. For the BCC phase in the Nb–B system there is no experimental information about the type of solution of B, whether interstitial or substitutional. However, it is known that the boron atoms occupy the interstitial sublattice in metals of BCC structure like Nb [27]. Therefore, also for the Nb–B system, the model (Nb)(Va)\( _2 \) was chosen yielding the following expression for its Gibbs energy:

\[ \alpha G_m^{BCC} = \chi_{Nb}^{BCC} \alpha G_{Nb}^{BCC} + \chi_{B}^{BCC} \alpha G_{B}^{BCC} + 3RT \left[ \chi_{Nb} \ln(\chi_{Nb}) 

+ \chi_{B} \ln(\chi_{B}) + \chi_{Nb} \ln(\chi_{B}) \right] 

+ \frac{\theta_{f}^{BCC}}{C_0} \left[ \chi_{Nb}^{BCC} - \chi_{B}^{BCC} \right] \]  

(7)

where \( \alpha G_{Nb}^{BCC} \) and \( \alpha G_{B}^{BCC} \) correspond to:

\[ \alpha G_{Nb}^{BCC} = \alpha G_{Nb}^{BCC} + 3\alpha G_{B}^{BCC} + 3\alpha G_{B}^{BCC} \]  

(8)

\[ \alpha G_{B}^{BCC} = \alpha G_{B}^{BCC} + 3\alpha G_{B}^{BCC} \]

The BCC phase is described within the limits of (Nb)(Va)\( _2 \), and (Nb)(B)\( _3 \), which correspond to the pure BCC-Nb, when the interstitial sublattice is empty, and to the metastable compound BCC-NbB\( _3 \), when the interstitial sublattice is completely filled with B atoms. Therefore, the Gibbs energy of the first end-member compound, \( \alpha G_{Nb}^{BCC} \) corresponds to that of the pure component Nb, \( \alpha G_{Nb}^{BCC} \).

2.4. Solution phase Nb\( _2 \)

The Nb\( _2 \) phase exhibits a hexagonal structure (hP3, space group P6\( \bar{3} \)mm, prototype AlB\( _2 \)) with two sublattices, with Nb and B atoms occupying 1a and 2d positions, respectively. As mentioned before, this phase shows an extensive homogeneity range (65–70 at% B) [5,7–9]. Post et al. [28] compared the structural characteristics of several diborides and proposed substitutional vacancies in both Nb and B positions as defect mechanisms to explain the homogeneity range of NbB\( _2 \). Muzzy et al. [29], while studying AlB\( _2 \)-type, B-rich (Mo,Zr)\( _2 \) by neutron diffraction, reported that the metal vacant positions would accommodate the excess of boron in its structure. More recently, Nunes et al. [9] investigated the homogeneity range of NbB\( _2 \), also by neutron diffraction experiments, and confirmed Post’s hypothesis. Therefore, the model (Nb)(Va)\( _2 \)(B)\( _2 \) was adopted for NbB\( _2 \) in the present work with its Gibbs energy described by the following equation:

\[ \alpha G_{NbB_2}^{BCC} = \chi_{Nb}^{BCC} \alpha G_{NbB_2}^{BCC} + \chi_{B}^{BCC} \alpha G_{NbB_2}^{BCC} + \chi_{Va}^{BCC} \alpha G_{Va}^{BCC} + \chi_{B}^{BCC} \alpha G_{B}^{BCC} \]  

(9)

where

\[ \alpha G_{NbB_2}^{BCC} = \alpha G_{Nb}^{BCC} + 2\alpha G_{Va}^{BCC} + \Delta e \alpha G_{B}^{BCC} \]

\[ \alpha G_{NbB_2}^{BCC} = \alpha G_{Nb}^{BCC} + 2\alpha G_{Va}^{BCC} + \Delta e \alpha G_{B}^{BCC} \]

\[ \alpha G_{NbB_2}^{BCC} = \alpha G_{Nb}^{BCC} + 2\alpha G_{Va}^{BCC} + \Delta e \alpha G_{B}^{BCC} \]

\[ \alpha G_{NbB_2}^{BCC} = \alpha G_{Nb}^{BCC} + 2\alpha G_{Va}^{BCC} + \Delta e \alpha G_{B}^{BCC} \]

and the excess term is given as follows:

\[ \Delta e \alpha G_{B}^{BCC} = \frac{g_{B_{BCC}}^{BCC}}{g_{B_{BCC}}^{BCC}} \left[ \chi_{Nb}^{BCC} \alpha G_{Nb}^{BCC} + \chi_{B}^{BCC} \alpha G_{B}^{BCC} \right] 

+ \chi_{Va}^{BCC} \alpha G_{Va}^{BCC} + \chi_{B}^{BCC} \alpha G_{B}^{BCC} \]  

(11)

In Eq. (10), \( \alpha G_{NbB_2}^{BCC} \) and \( \alpha G_{B}^{BCC} \) correspond to the Gibbs energy of pure Nb and B with hexagonal hP3 structure, respectively.
2.5. Stoichiometric phases

The crystal structures of the stoichiometric borides (Table 1) suggest the use of multiple sublattices for their modeling, as follows: (1) for Nb$_3$B$_2$, (Nb)$_2$(Nb)$_2$(B)$_2$; (2) for NbB, (Nb)$_4$(B)$_4$; (3) for Nb$_5$B$_6$, (Nb)$_2$(Nb)$_4$(B)$_4$(B)$_4$(B)$_4$; and (4) for Nb$_3$B$_4$, (Nb)$_2$(B)$_4$(B)$_4$(B)$_4$. However, in the present work, positions occupied by the same element were considered energetically equivalent, reducing their description to 2-sublattices, using the smallest integers as stoichiometric indices. For each stoichiometric phase, there is only one possible arrangement of the pure elements in the crystal structure of the compound. Therefore, the ideal and excess contributions to their Gibbs energies are equal to zero, leading to the following expressions for their Gibbs energies:

\[
G_{m}^{\text{NbB}_2} = 3\delta G_{\text{BCC}} + 2\delta G_{\text{Rhom}} + \Delta_{f}^{\circ}G_{\text{NbB}_2} \tag{12}
\]

\[
G_{m}^{\text{NbB}} = \delta G_{\text{BCC}} + \delta G_{\text{B}} + \Delta_{f}^{\circ}G_{\text{NbB}} \tag{13}
\]

\[
G_{m}^{\text{NbB}_6} = 5\delta G_{\text{BCC}} + 6\delta G_{\text{B}} + \Delta_{f}^{\circ}G_{\text{NbB}_6} \tag{14}
\]

\[
G_{m}^{\text{NbB}_4} = 3\delta G_{\text{BCC}} + 4\delta G_{\text{B}} + \Delta_{f}^{\circ}G_{\text{NbB}_4} \tag{15}
\]

### Table 2
Optimized Gibbs energy coefficients for all phases of the Nb–B system

<table>
<thead>
<tr>
<th>Phase Model</th>
<th>Parameter</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (Nb,B)</td>
<td>$a$</td>
<td>$158\ 000$</td>
</tr>
<tr>
<td>L (Nb,B)</td>
<td>$b$</td>
<td>$19.5$</td>
</tr>
<tr>
<td>Nb$_3$B$_2$</td>
<td>$c$</td>
<td>$121\ 500$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$147\ 500$</td>
</tr>
<tr>
<td>Nb$_3$B$_4$</td>
<td>$c$</td>
<td>$295\ 300$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$20\ 000$</td>
</tr>
<tr>
<td>Nb$_5$B$_6$</td>
<td>$c$</td>
<td>$727\ 900$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$128\ 150$</td>
</tr>
<tr>
<td>Nb$_3$B$_4$</td>
<td>$c$</td>
<td>$469\ 900$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$74\ 000$</td>
</tr>
<tr>
<td>Nb$_3$B$_2$</td>
<td>$c$</td>
<td>$295\ 300$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$128\ 150$</td>
</tr>
<tr>
<td>Nb$_5$B$_6$</td>
<td>$c$</td>
<td>$727\ 900$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$74\ 000$</td>
</tr>
<tr>
<td>Nb$_3$B$_4$</td>
<td>$c$</td>
<td>$469\ 900$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$74\ 000$</td>
</tr>
<tr>
<td>Nb$_3$B$_2$</td>
<td>$c$</td>
<td>$295\ 300$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$128\ 150$</td>
</tr>
<tr>
<td>Nb$_5$B$_6$</td>
<td>$c$</td>
<td>$727\ 900$</td>
</tr>
<tr>
<td>NbB (Nb)</td>
<td>$c$</td>
<td>$74\ 000$</td>
</tr>
<tr>
<td>Nb$_3$B$_4$</td>
<td>$c$</td>
<td>$469\ 900$</td>
</tr>
</tbody>
</table>

### Table 3
Enthalpies of formation at 298.15 K for the stable Nb-borides

<table>
<thead>
<tr>
<th>Phase</th>
<th>Enthalpy at 298.15 K (kJ/mol of phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated</td>
<td></td>
</tr>
<tr>
<td>Nb$_3$B$_2$</td>
<td>$-298$</td>
</tr>
<tr>
<td>NbB</td>
<td>$-128.7$</td>
</tr>
<tr>
<td>Nb$_3$B$_6$</td>
<td>$-723.1$</td>
</tr>
<tr>
<td>Nb$_3$B$_4$</td>
<td>$-473.3$</td>
</tr>
<tr>
<td>NbB</td>
<td>$-196.3$</td>
</tr>
</tbody>
</table>

Fig. 3. Phase diagram of the Nb–B system calculated with the coefficients of the present work.

Fig. 4. Calculated enthalpy differences \([HT] - H(298)\] (continuous lines) for Nb$_3$B$_2$, NbB, Nb$_3$B$_4$ and NbB$_2$ and the values measured by Bolgar et al. \([20]\) (symbols).
3. Optimization procedure (results and discussion)

The $\phi^L$ parameters in Eqs. (6), (7) and (11) ($\phi = L$, BCC or NbB$_2$) as well as the Gibbs energy of formation of the end-members in Eqs. (8) and (10) and of the stoichiometric compounds in Eqs. (12)−(15) are described according to Eq. (5). Their coefficients $a$, $b$ and $c$ correspond to the adjustable variables in the optimization procedure (see Table 2).

The temperature dependent Gibbs energies of the pure elements in their stable and metastable states were taken from SGTE database [30] and are given in Appendix.

The model (Nb)$_3$(B, Va)$_3$, chosen for the BCC leads to the definition of the end-member NbB$_2$, with its Gibbs energy of formation given by $\Delta f^\text{G}_{\text{BCC},\text{NbB}_2}^{\phi}$, for which no experimental value is available. A positive value of 5000 J/mol of atoms has been often used, e.g. Ref. [31], for the Gibbs energy of formation of such metastable compounds, thus, a value of 20000 J/mol of phase was adopted here for $\Delta f^\text{G}_{\text{BCC},\text{NbB}_2}^{\phi}$.

The SGTE descriptions forhcp-Nb and hcp-B were adopted for the parameters $\Delta f^\text{G}_{\text{Nb},\text{B}}^{\phi}$ and $\Delta f^\text{G}_{\text{Va},\text{B}}^{\phi}$ in Eq. (10), respectively. The Gibbs energy of the end-member with vacancies in both sublattices of the phase NbB$_2$ was assumed to be zero ($\Delta f^\text{G}_{\text{Va},\text{B}}^{\phi} = 0$).

The liquidus line and the temperatures of the invariant reactions measured by Rudy and Windisch [5] with the modifications proposed in Refs. [10,11] were adopted in the optimization procedure. However, to make the stability of NbB$_6$ compatible with the measurements of Rudy and Windisch, the 3133 K reported for the eutectic L $\leftrightarrow$ NbB + NbB$_4$, was assumed to be valid for the eutectic L $\leftrightarrow$ NbB + NbB$_6$, with the composition of the liquid at 52 at% B [10]. The temperature for the peritectic formation of NbB$_6$ (L + NbB$_4$ $\leftrightarrow$ NbB$_6$) was assumed to be 3170 K, which is a mean value between the temperatures given by Rudy and Windisch for the liquidus line and the temperatures of the invariant transformations. Furthermore, all thermodynamic data available were used in the optimization procedure.

The optimized Gibbs energy coefficients for the phases of the Nb–B system are presented in Table 2. The calculated phase diagram is shown in Fig. 3, where a good agreement between the experimental and calculated values can be observed. The calculated enthalpy differences, $H(T) - H(298)$, for the phases NbB$_2$, NbB, Nb$_3$B$_4$ and NbB$_2$ reproduce well the values measured by Bolgar et al. [20], as shown in Fig. 4. The calculated and experimental data for the enthalpies and the entropies of the intermediate compounds at 298.15 K are compared in Tables 3 and 4, respectively, also showing a good agreement.

Acknowledgements

The authors gratefully acknowledge the financial support of FAPESP through grants #97/06348-4 (Nb–B–Si), #99/06160-0, and #00/08062-5.
References