OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author’s version published in: http://oatao.univ-toulouse.fr/23787

Official URL: https://doi.org/10.1016/j.jeurceramsoc.2018.12.016

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Transient and steady states of Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$·Y$_2$O$_3$ (ss) interactions with calcium magnesium aluminium silicates

Sandrine Duluarda, Elodie Delona, Jean-Pierre Boninoa, André Malićb, Aurélien Jouliacc, Luc Bianchib, Philippe Gomezd, Florence Ansarta

a CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Bât CIRIMAT, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
b SAFRAN AIRCRAFT ENGINES Site de Châtellerault, Z.I. Nord, rue Maryse Bastié, BP 129, 86101 Châtellerault Cedex, France
c SAFRAN Tech, Pôle Matériaux et Procédés, rue des Jeunes Bois, Châteaufort, CS 80112, 78772 Magny-Les-Hameaux, France
d DGA Techniques aéronautiques, 47 rue Sains Jean – 30123 Balma, France

ARTICLE INFO

Keywords:
Gd$_2$Zr$_2$O$_7$
2ZrO$_2$·Y$_2$O$_3$ (ss)
Reaction products
Kinetics
CMAS tightness

ABSTRACT

Reactions between calcium magnesium aluminium silicates (CMAS) and Gd$_2$Zr$_2$O$_7$ or 2ZrO$_2$·Y$_2$O$_3$ (ss) are investigated within a temperature range of 1200–1300°C and for durations of 1h–100h. The evolution of CMAS penetration depth in Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$·Y$_2$O$_3$ (ss) pellets varies considerably depending on the interaction time. A quantitative analysis of the nature and composition of phases observed in stationary conditions (powder/powder interaction) is performed by SEM-FEG coupled with WDS analyses using micro-agglomerated nanoparticles of Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$·Y$_2$O$_3$. Faster kinetics of the gadolinium-based system are illustrated through an analysis of the morphology of the reaction area and of the resulting CMAS tightness of reaction products. The compositions and quantities of reaction products observed at equilibrium are very similar for the two systems, but transient states are significantly different.

1. Introduction

With improvements made to metal parts and thermal barrier coatings (TBCs), aero-engine working temperatures have increased in addition to their efficiency [1,2]. However, as a result, TBCs are subjected to a new form of degradation: corrosion at high temperatures by molten calcium-magnesium-alumino-silicates (CMASs) [3,4]. These compounds are naturally found on Earth (e.g., in volcanic ash, sand, dust or even pollution) [5], and their silicon ratios vary in addition to levels of elements such as iron, nickel, vanadium, etc. [6–9]. As operating temperatures exceed the glass transition or even the melting temperature of most CMAS compounds, CMAS interactions with TBCs are detected. Due to their high wettability and low viscosity [10], molten CMAS infiltrates the porosity/cracks of the TBC, resulting in severe levels of thermochemical and thermomechanical degradation [11,12]. The molten CMAS then infiltrates the TBC, leading to the degradation of the morphology of TBCs [4,10,12].

Moreover, with cooling, molten CMAS becomes solid while TBC becomes rigid and loses its strain tolerance [5,12]. CMAS corrosion leads to TBC delamination, obstruction of cooling channels, etc. [14–16]. These issues have led motorists to revise the specifications of turbine blade coatings and to develop systems more resistant to CMAS corrosion at high temperatures [13]. Several authors have demonstrated an interest in oxides of yttrium Y, gadolinium Gd and other rare earths RE$^{3+}$ (RE: La, Nd, Ce, Er, Eb, and Yb) in the form of simple oxides or of pyrochlore-based oxides A$_2$B$_2$O$_7$ [13,17–21]. Indeed, rare earth zirconates present thermal conductivity similar to that of YSZ: 1.6 W·m$^{-1}$·K$^{-1}$ for Gd$_2$Zr$_2$O$_7$ [22] and 1.8 W·m$^{-1}$·K$^{-1}$ for 2ZrO$_2$·Y$_2$O$_3$ at 700°C [23] versus roughly 1.7 W·m$^{-1}$·K$^{-1}$ for YSZ. Such materials have been explored as alternative TBCs or as protective coatings for existing TBCs [25]. For protective coatings, a low coefficients of thermal expansion (CTE) mismatch is required between the rare earth zirconates and YSZ TBCs. This is the case with 11.6 *10$^{-6}$ K$^{-1}$ and 9.15 *10$^{-6}$ K$^{-1}$ CTEs for Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$·Y$_2$O$_3$ (ss), respectively, while for YSZ, it is equal to 11 *10$^{-6}$ K$^{-1}$ [22,24]. Related requirements are numerous. An anti-CMAS coating presents strong reaction kinetics with molten CMAS. Reaction products must be solid and stable at high temperatures, and they must seal the porosity, voids or cracks of a thermal barrier coating to limit the infiltration of CMAS during a future attack. Eventually, the anti-CMAS coating must trap a large volume of

CMAS elements (Ca\(^{2+}\), Mg\(^{2+}\), Al\(^{3+}\), and Si\(^{4+}\)) while the CMAS tightness of the reaction product layer is a central requirement [21,26–30]. Poerschke [31] observed the calcia-silica-yttria system at 1400°C and 1600°C. He identified the formation of different phases: Ca\(_2\)Y-cyclonodulite Ca\(_2\)Si\(_2\)O\(_6\), silico-carbonate Ca\(_2\)YSi\(_2\)O\(_5\), and a zirconium-enriched cubic fluoride phase depleting in gadolinium Zr\(_2\)Gd\(_2\)O\(_7\). These results are confirmed by the work of Poerschke on ternary CaO-Gd\(_2\)O\(_3\)-SiO\(_2\) studied at 1400°C and 1600°C [34]. Stable phases observed at 1400°C are silicocarnotite Ca\(_3\)Gd\(_2\)Si\(_2\)O\(_7\), cyclonodulite Ca\(_2\)Gd\(_2\)Si\(_2\)O\(_6\), and apatite solid solution for which compositions extend from Gd\(_{33}\)(Si\(_2\)O\(_7\))\(_2\)O\(_2\) to Ca\(_2\)Gd\(_2\)(Si\(_2\)O\(_7\))\(_2\)O\(_2\). At 1600°C, the liquid coexists with crystalline phase Si\(_2\)O\(_2\), apatite and Ca\(_2\)Gd\(_2\)Si\(_2\)O\(_7\). The wide range of liquid stable compositions found in contact with apatite phases show that this phase is predominant in crystallization products formed for reactions occurring between CaO-based TBC and oxides CaO and SiO\(_2\). In another study Kramer [35] examined infiltration by melt of CMAS of Gd\(_2\)Zr\(_2\)O\(_7\) based TBC synthesized by EB-PVD. According to his results, main reaction products are Ca\(_2\)Gd\(_2\)(Si\(_2\)O\(_7\))\(_2\)-based apatite and Zr, Gd rich fluoride phases with small volumes of calcium. He proved that these products fill the columnar porosity of the TBC and prevent the infiltration of the melt. Finally, these analyses show that the formed apatite is substituted with zirconium according to the following formula: Gd\(_{2}\)Zr\(_2\)(Si\(_2\)O\(_7\))\(_2\)(Ca\(_2\)O\(_2\)).

Drexler [36,37] studied interactions occurring between CMAS/Gd\(_2\)Zr\(_2\)O\(_7\) and CMAS/2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) (ss) with a CMAS composition of 39.2 mol% CaO – 5.2 mol% MgO – 41 mol% Al\(_2\)O\(_3\) – 51.5 mol% SiO\(_2\), i.e., a mixture of formulas Ca\(_{39}\)Al\(_{38}\)Mg\(_{3}\)Si\(_{15}\). Apatite phase and cubic fluoride phase enriched in zirconia formed. In studying infiltration at 1200°C over 24h for CMAS for pellets of 15% porosity, he demonstrated that CMAS penetration depths reach 20μm and 60μm for 2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) (ss) system and Gd\(_2\)Zr\(_2\)O\(_7\), respectively. His interpretation is that molten CMAS must penetrate deeper into a Gd\(_2\)Zr\(_2\)O\(_7\) pellet to accumulate enough Gd\(^{3+}\) cations to form the Gd-apatite phase. By extension, he concludes that TBC composed of RE\(_2\)Zr\(_2\)O\(_7\) and rare earth cations larger than those of Gd\(^{3+}\) cations but similar to those of Ca\(^{2+}\) cations (e.g., Sm\(^{3+}\), Nd\(^{3+}\), Ce\(^{3+}\), and La\(^{3+}\)) may not be sufficiently effective, as they form an RE rich apatite phase (Ca\(_2\)RE\(_2\))RE\(_2\)(Si\(_2\)O\(_7\))\(_2\)O\(_2\) type [13,17,17,32,33,35,38–42]. Conversely, Drexler focused on RE\(_2\)Zr\(_2\)O\(_7\) TBC with a RE\(^{3+}\) size of less than Y\(^{3+}\). For example, Y\(_2\)Zr\(_2\)O\(_7\) reactions with molten CMAS result in the formation of apatite phase Ca\(_2\)Zr\(_2\)(Si\(_2\)O\(_7\))\(_2\)O\(_2\) and fluoride phase rich enriched with zirconia and a little ytterbium. However, the penetration depth of CMAS is high (40μm) due to kinetics of the crystallization of RE-apatite, which tend to decline with RE\(^{3+}\) size [43]. Finally, RE\(_2\)Zr\(_2\)O\(_7\)-based TBC, for which rare earth RE\(^{3+}\) cations present a lower ionic radius than yttrium Y\(^{3+}\) cations (e.g., Er\(^{3+}\), Yb\(^{3+}\), and Lu\(^{3+}\)), are less effective than 2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) (ss) and even when these systems form Ca\(_2\)RE\(_2\)(Si\(_2\)O\(_7\))\(_2\)O\(_2\). Drexler focused on interactions observed at 1200°C for a Ca\(_{39}\)Al\(_{38}\)Mg\(_{3}\)Si\(_{15}\) composition with a higher viscosity than that of Ca\(_{39}\)Al\(_{38}\)Mg\(_{3}\)Si\(_{15}\) [44]. Kraus [45] conducted model experiments on hollow spheres of 2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) (ss) and concluded that high concentrations of Y\(^{3+}\) in a confined volume are required for the formation of the apatite phase.

In this paper, the temperature dependence of Gd\(_2\)Zr\(_2\)O\(_7\) and 2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) performance is explored over an extended temperature range: 1200°C for normal operating conditions and 1250°C and 1300°C for peak temperatures (take-off and landing) over 1 h to 100 h. The Ca-Mg-Al silicate composition used in this study is as follows: 33.2 wt% CaO – 6.5 wt% MgO – 11.9 wt% Al\(_2\)O\(_3\) – 45 wt% SiO\(_2\), i.e., a molar composition of 33 mol% CaO – 9 mol% MgO – 13 mol% Al\(_2\)O\(_3\) – 48.5 mol% SiO\(_2\) abbreviated in the following as C\(_{33}\)M\(_{15}\)A\(_{15}\)S\(_{33}\). These conditions are representative of the average chemical composition of CMAS found in some real parts [5] and have been frequently used in the literature [10,11,46–48]. The melting temperature reported for this CMAS composition is 1233°C, and its calculated glass transition temperature is 764°C [44]. The study first focuses on pellets (2D interaction) to determine the thickness of the reaction layer as function of the reaction duration. Then, a 3D configuration (powder/powder interaction) of a 30/70 anti-CMAS / CMAS ratio is studied to understand reaction products, volumes and morphologies. Conditions applied are more stationary than those of pellet infiltration. The anti-CMAS raw material powder consists of spherical agglomerates. Reaction product compositions and information on the kinetics of reactions are extracted from SEM FEG observations and WDS analyses. The objective of the study is to address two issues related to CMAS mitigation: the importance of the composition of the reaction products relative to the kinetics of their formation and differences observed between system transient and steady states.

2. Materials and methods

2.1. CMAS composition and preparation

The CMAS C\(_{33}\)M\(_{15}\)A\(_{15}\)S\(_{33}\) was prepared from single oxides of calcium (CaO, Aldrich, purity ≥ 99%), magnesium (MgO, Sigma-Aldrich, purity ≥ 99%), aluminum (Al\(_2\)O\(_3\), Sigma-Aldrich, purity ≥ 99%) and silicon (SiO\(_2\), Aldrich, purity ≥ 99.9%). The compounds were mixed with ultrapure water and dried at roughly 80°C for 12 h. They were then placed in a platinum crucible and heated at 1400°C for one hour. After quenching with water, the glassy material was manually ground to obtain CMAS powder. The melting temperature determined by TG-DTA was set to 1230 ± 5°C, which is comparable to the value given in the literature (1233°C [44]).

2.2. Anti-CMAS powders

As anti-CMAS powders we used commercial Gd\(_2\)Zr\(_2\)O\(_7\) and 2Zr\(_2\)O\(_7\)Y\(_2\)O\(_3\) (ss) from Treibacher with purity levels exceeding 99%. They are composed of submicronic particles agglomerated in several micron spheres (cf Fig. 1).

2.3. Pellet preparation

Dense pellets (densities of > 90–95% on pellet surfaces) were prepared by Spark Plasma Sintering (SPS) from each anti-CMAS powder. The powders were pressed in a uniaxial press. No binder was used. The pressed powder was subjected to Joule heating in an SPS system. Pellets were annealed at 1500°C over 5 min under a pressure level of 31.4 kN in a 25 mm diameter graphite mould. A graphite piping was placed between the powder and the mould. Pressure was applied throughout the temperature plateau. The piping was removed by post-thermal treatment applied at 900°C over 10 h under air.

2.4. Interaction test procedures

CMAS powder / anti-CMAS pellet interactions were analysed by depositing CMAS powders onto the surfaces of the anti-CMAS pellets at a...
contamination rate of 10 mg/cm². This rate corresponds to typical contamination rates given in the literature [13,36].

For the CMAS powder / anti-CMAS powder interactions, the equimassic mixing of an anti-CMAS powder with CMAS was performed for cations with a molar ratio of 0.7 Ca3Mg5S45 / 0.3 RE50Zr50 (RE2Zr2O7). The two powders were manually mixed in a mortar. The anti-CMAS agglomerates were not fully broken through this technique. The mixed powders were placed in a platinum crucible in a preheated furnace. After heating, the cooling rate was determined by the furnace inertia (cooling rate of approx. 50°C/h).

2.5. Characterizations

X-ray diffraction analyses were conducted using an automated Bruker D4 Endeavor diffractogram of the Θ-2Θ configuration. An anticathode of copper (λ (CuKα1) = 0.15406 nm, λ (CuKα2) = 0.15444 nm) generated X-rays. Analyses were carried out within an angular range of 10° to 100° with a measurement step of 0.016° and with a counting time of 0.15 s per step. Phase identification was applied using EVA software databases.

Anti-CMAS powders were characterized by Raman spectroscopy with a Raman Horiba Jobin Yvon Labram HR 800 spectrometer equipped with a confocal microscope and a 532 nm laser.

The identification of the apatite phase is not possible via XRD, as cell parameters of Ca4Y6(SiO4)6O and Ca2Y8(SiO4)6O2 are very similar (a = 9.356 Å and c = 6.793 Å (JPCDS file: 00-027-0093) for Ca4Y6-apatite while for Ca2Y8-apatite, a = 9.36 Å and c = 6.78 Å (JPCDS file: 04-006-0319)). Then were analysed by Electron Probe Microanalysis (EPMA). For EPMA, the field emission Cameca SXFive FE microprobe was used with an acceleration voltage of 10 keV and a probe current of 30 nA. Under these conditions, the minimum observable feature was smaller than one micron. Chemical compositions were calculated from the PAP (Pouchou and Pichoir [49]) correction model. As standard specimens we used periclase MgO (Kα-ray) for Mg; gadolinium orthophosphate GdPO4 (Lα-ray) for Gd; wollastonite CaSiO3 (Kα-ray) for Ca and Si; yttrium orthophosphate YPO4 (Lα-ray) for Y; corundum Al2O3 (Kα-ray) for Al; and zircon SiZrO4 (Lα-ray) for Zr. Oxygen content levels were calculated from the theoretical stoichiometry of the compounds. EPMA was used to measure the composition of each phase and of the residual CMAS. A 0.1% accuracy level was classically considered for EPMA versus 1% for the EDS analyses. For reaction product compositions, analyses were conducted of the central regions of the grains. For residual CMAS compositions, local measurements were made at a controlled distance of 10 μm from reaction product grains. The results presented in this paper correspond to an average value of over roughly 30 points for each phase. Oxygen content levels were deduced from cation content.

We employed the JEOL JSM-7800 F Prime as a field-emission gun scanning electronic microscopy SEM-FEG microscope for sample characterization. Observations were made in both secondary and back-scattered electron modes. Volumes of reaction products formed during CMAS attacks were determined by image analysis using ImageJ software.

Fig. 1. Scanning electron microscopy of the as-received Gd$_2$Zr$_2$O$_7$ powder (a) and b) as-received 2ZrO$_2$·Y$_2$O$_3$ (ss) powder (c) and d).
3. Results

3.1. D interactions of CMAS between $\text{Gd}_2\text{Zr}_2\text{O}_7$ and $2\text{ZrO}_2\cdot\text{Y}_2\text{O}_3$ (ss): CMAS on anti-CMAS pellets

The objective of this study was to evaluate the behaviours of different anti-CMAS systems towards a CMAS reaction front. Dense pellets were subjected to CMAS attack at 1200°C for 48 h; at 1250°C for 1 h, 4 h and 48 h; and at 1300°C for 4 h and 48 h. Microscopic images of interaction zones observed after 1 h, 4 h, and 48 h hours of interaction at 1250°C are presented in Fig. 2.

Very dense pellets were used to curtail effects of pellet morphologies on infiltration kinetics and to thus study anti-CMAS effects independently. Thus, in this study the thickness of reaction products only depends on reaction kinetics and on the permeability of reaction products \cite{26}. Either the system is not CMAS tight and reaction products form continuously or for an efficient anti-CMAS system the reaction product layer is CMAS tight and infiltration is stopped.

The evolution of the morphologies of reaction products of $\text{Gd}_2\text{Zr}_2\text{O}_7$ and $2\text{ZrO}_2\cdot\text{Y}_2\text{O}_3$ (ss) systems annealed at 1250°C for 1 h, 4 h and 48 h varies. For the $\text{Gd}_2\text{Zr}_2\text{O}_7$ system, a continuous front of reaction products appears at the interface between the unreacted pellet and the CMAS front. The reaction front includes two parts: a continuous layer that is biphasic (composed of fluorite and apatite as demonstrated below) and a part with reaction products dispersed across the remaining CMAS.

For $2\text{ZrO}_2\cdot\text{Y}_2\text{O}_3$ (ss) a loose mixture of reaction products is observed across the interaction zone. The reaction product front of $2\text{ZrO}_2\cdot\text{Y}_2\text{O}_3$ (ss) and CMAS reactions includes a mixture of reaction products and CMAS.
while a continuous interface is not present. In this case, several contrasting compositions are observed, showing the presence of phases other than fluorite and apatite as confirmed in the following sections.

Analyses conducted at higher temperatures confirm this tendency with 10 μm-thick continuous fronts found for Gd$_2$Zr$_2$O$_7$ products and with no continuous front found for 2ZrO$_2$∙Y$_2$O$_3$ (ss) except for a very thin front observed after treatment at 1300°C for 48 h (see Fig. 3). However, even in this case the total thickness of reaction products with 2ZrO$_2$∙Y$_2$O$_3$ (ss) is doubled relative to Gd$_2$Zr$_2$O$_7$ such that the thin layer does not efficiently limit further CMAS infiltration (cf. Fig. 3b). This shows however that the reaction product layer morphology can become CMAS tight at higher temperatures as reaction kinetics are enhanced.

For Gd$_2$Zr$_2$O$_7$ /CMAS pellets further analyses of the continuous layers (Fig. 4) show that they are more than 2 μm thick even after only 1 h of interaction at 1250°C. By contrast, for 2ZrO$_2$∙Y$_2$O$_3$ (ss), the thickness of the continuous layer is null even after 48 h of sintering at 1200°C and 1250°C.

An analysis of evolution with time on the thickness of reaction products was performed (Fig. 5). At 1250°C a constant increase in reaction product thickness with time is observed for 2ZrO$_2$∙Y$_2$O$_3$ (ss) to reach 40 μm after 48 h. For Gd$_2$Zr$_2$O$_7$, after a slight increase within 4 h, reaction product thicknesses quickly stabilize at values half those of 2ZrO$_2$∙Y$_2$O$_3$ (ss). As observed by SEM (Fig. 2 for 4 h at 1250°C), CMAS is still found on pellet surfaces after several hours of interaction at 1250°C. CMAS is still found on the pellets while stabilization occurs, showing that Gd$_2$Zr$_2$O$_7$ limit the further infiltration of CMAS. At 1300°C the stability of product thickness over 4 h–48 h is not significant, as it is only a sign of the end of the reaction occurring due to a lack of CMAS present.

Moreover, for the shortest periods, the reaction product layer of 2ZrO$_2$∙Y$_2$O$_3$ (ss) is thinner than that of Gd$_2$Zr$_2$O$_7$. As described above, 2ZrO$_2$∙Y$_2$O$_3$ (ss) reaction products are not CMAS tight, and thus the fewer reaction products observed can only be attributed to slow kinetics of product formation (and not to a blocking of CMAS infiltration). With the microstructure of the 2ZrO$_2$∙Y$_2$O$_3$ (ss) and Gd$_2$Zr$_2$O$_7$ pellets being similar, this feature highlights the fast kinetics of Gd$_2$Zr$_2$O$_7$ product formation.

This work illustrates different behaviours of the two selected compositions in terms of morphologies of interaction zones, giving rise to more CMAS tight behaviour for Gd$_2$Zr$_2$O$_7$ relative to that of 2ZrO$_2$∙Y$_2$O$_3$ (ss). However, a quantitative analysis is difficult to conduct in such a dynamic configuration. Thus, to quantitatively study properties of the system, a 3D isotropic configuration was applied in the next part of the study as follows. The nature and composition of phases observed as a function of interaction time are examined.

3.2. D interactions between CMAS and Gd and Y zirconate powders

3.2.1. Interaction reaction mechanisms

XRD and Raman analyses were performed to analyse the raw materials and reaction products (Fig. 6). According to these structural analyses and to the literature, Gd$_2$Zr$_2$O$_7$ raw material is composed of a mixture of pyrochlore and disordered fluorite phases. 2ZrO$_2$∙Y$_2$O$_3$ (ss) is a disordered fluorite phase. These results are confirmed by several works [32,50–55].

After 1 h of interaction at 1250°C, the XRD signal relative to the pyrochlore raw material is not detectable by XRD. The signal of apatite is clearly detected for reaction products of Gd$_2$Zr$_2$O$_7$ in parallel with a transition from pyrochlore phases to disordered fluorite. Under these conditions, the main reaction is as follows:

\[\text{RE}_2\text{Zr}_2\text{O}_7 + \text{CMAS} \rightarrow \text{Modified CMAS} + \text{Apatite} + \text{Substituted fluorite} + \text{Sub-products} \]

![Fig. 3. SEM images of the interface between non-reacted anti-CMAS pellets and reaction products for a) Gd$_2$Zr$_2$O$_7$ and b) 2ZrO$_2$∙Y$_2$O$_3$ (ss) after 48 h of interaction at 1300°C.](image)

![Fig. 4. Continuous reaction product layer thickness as a function of sintering durations and temperatures for Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$∙Y$_2$O$_3$ (ss) pellets.](image)
Substitution ions are mainly composed of Gd$^{3+}$ or Y$^{3+}$ cations, but other substitutions in the apatite or fluorite phases are not excluded. The exact compositions of the phases are detailed in paragraph 3.2.2 based on microscopic chemical composition analyses. For 2ZrO$_2$·Y$_2$O$_3$ (ss), the signal of apatite is detectable and a slight shift occurs in fluoride signals towards higher angles. The main reaction that occurs is the same as that of Gd$_2$Zr$_2$O$_7$. However, a side reaction with the formation of transition garnet phases observed in some of the heat treatment conditions is highlighted in the following sections.

3.2.2. Interaction products: features and proportions

Morphologies and chemical compositions of the reaction products were evaluated from coupling scanning electron microscopic and FEG WDS analyses (accuracy of 0.1 mol%). The microscopic analyses (Fig. 7) reveal the occurrence of faster reactions for Gd$_2$Zr$_2$O$_7$ than for 2ZrO$_2$·Y$_2$O$_3$ (ss) with two features: the morphology of the interaction zone and the nature of the reaction products. Concerning morphologies of the interaction zone, for the first hours of interaction, reaction products are concentrated in large spherical agglomerates in the case of Gd$_2$Zr$_2$O$_7$ while they are spread across the whole volume of the remaining CMAS for 2ZrO$_2$·Y$_2$O$_3$ (ss). With interaction time, Gd-apatite and Gd-fluorite agglomerates disperse within silicate-based glass and an Ostwald-type ripening mechanism is observed in the two systems over long interaction periods.

This can be correlated with the faster kinetics of CMAS reactions occurring with Gd$_2$Zr$_2$O$_7$ as discussed in paragraph 4.1. Phases occurring depending on the anti-CMAS involved are illustrated in Table 1. At equilibrium (100 h of interaction) only fluorite and apatite are present in both 2ZrO$_2$·Y$_2$O$_3$ (ss) and Gd zirconate reaction products. This analysis is consistent with the literature on Gd zirconates [26]. In transient states (< 48 h) at 1250°C and 1300°C, fluorite and apatite form in both cases after only 1 h of interaction while other phases are found for 2ZrO$_2$·Y$_2$O$_3$ (ss). A rough quantitative image analysis shows that 20–25% of the volume is occupied by fluorite while 20% is composed of apatite for Gd$_2$Zr$_2$O$_7$ without significant variations occurring with time. For 2ZrO$_2$·Y$_2$O$_3$ (ss) the ratios are slightly different with 15% fluorite and 25% apatite found at 1250°C and with 15–20% fluorite and 25–30% apatite found at 1300°C. The proportion of garnet

Fig. 5. Reaction product layer thickness depending on the temperature and duration of interactions occurring between Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$·Y$_2$O$_3$ (ss) anti-CMAS pellets.

Fig. 6. Structural analyses of raw materials and reaction products derived after 1 h of interaction at 1250°C: a) XRD and b) Raman spectroscopy.
phase (phase present in the first stage of interaction at 1250 °C) decreases with annealing time with roughly 10–15% of garnet phase observed after 1 h of interaction, with 7% observed after 48 h and with no garnet phase observed after 100 h. After 100 h at 1300 °C, roughly 60% of the glass remains.

At 1200 °C a major difference is observed between the two anti-CMAS materials: fluorite and apatite form after 24 h of interaction for Gd$_2$Zr$_2$O$_7$ while for 2ZrO$_2$•Y$_2$O$_3$ (ss) only transition phases (garnet and a non-identified phase) are found over this interaction period. Moreover, while for 2ZrO$_2$•Y$_2$O$_3$ (ss) the garnet phase is still present after 48 h interactions at 1250 °C, this transition phase is not present after 1 h for Gd$_2$Zr$_2$O$_7$, and only a small proportion (< 2%) of non-identified phase is observed after less than 24 h of interaction time. This shows that the transition state is shorter for gadolinium zirconate and that the system forms thermodynamically predicted phases (cf thermodynamic data in Poerschke works [26]) from 1250 °C over 1 h. Kinetics are slower for 2ZrO$_2$•Y$_2$O$_3$ (ss); it is necessary to wait a long period at 1250 °C or to heat at higher temperatures (1300 °C) to remove metastable phases such as garnet phase.

3.2.3. Composition of the apatite phases
Gadolinium and yttrium facilitate a wide range of possible associations to form differently substituted apatite phases. Compositions of apatite observed over different interaction periods and at different temperatures were measured by EPMA and are reported in Table 2. The results were fit to a generic formula for apatite RE$_{6-x}$Zr$_x$F$_y$(RE$_2$[2za+(y/3)]Ca$_{2-z}$)[SiO$_4$]$_6$O$_{2x}$. Values of x, y and z as a function of time and temperature are plotted in Fig. 8.

At a given temperature apatite formed from 2ZrO$_2$•Y$_2$O$_3$ (ss) maintains the same composition with time. The most important factor involved is the interaction temperature: Ca and Zr content levels (za and ya, respectively) in apatite increase with increasing temperature. This increase in additional elements of apatite is accompanied by structural defects with the presence of oxygen vacancies (xa decreases). The tendency is the same for Gd$_2$Zr$_2$O$_7$ with only slight changes in za and ya observed with interaction time.

![Fig. 7. SEM images of interactions zones observed after reactions between CMAS and anti-CMAS powders and between Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$•Y$_2$O$_3$ (ss) after 1 h and 100 h of interaction at 1200 °C, 1250 °C and 1300 °C.](image-url)

Table 1
Features of the reaction products of CMAS with Gd$_2$Zr$_2$O$_7$ and 2ZrO$_2$•Y$_2$O$_3$ (ss) for the studied interaction temperatures and durations based on WDS and SEM-FEG analyses of a cross-section of equimassic mixtures of CMAS and anti-CMAS.

<table>
<thead>
<tr>
<th>Annealing temperature</th>
<th>Annealing time (h)</th>
<th>Gd$_2$Zr$_2$O$_7$</th>
<th>2ZrO$_2$•Y$_2$O$_3$ (ss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250 °C</td>
<td>1</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Liq + F + Ap (+ non ident.)</td>
<td>Liq + F + Ap (+ non ident.)</td>
</tr>
<tr>
<td>1300 °C</td>
<td>1</td>
<td>Liq + F (+ non ident.)</td>
<td>Liq + F + Ap</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Liq + F + Ap</td>
<td>Liq + F + Ap</td>
</tr>
</tbody>
</table>

(...): small amount
However, a higher concentration of structural defects observed in the first phase of interaction is visible for Gd$_2$Zr$_2$O$_7$ apatite products (low xa).

For long interaction periods at 1250°C, apatite formed from gadolinium zirconate and 2ZrO$_2$∙Y$_2$O$_3$ (ss) is similar with respectively $za=0.9$, $ya=0.8$, $xa=2±0.1$ and $za=0.8$, $ya=0.6$, $xa=2±0.1$. By contrast, at the beginning of the interaction, the gadolinium apatite structure includes several more defects with a coefficient of $xa=1.4$ relative to one of approximately 2 for Y apatite. Gadolinium content levels in the apatite decrease with time while calcium content levels increase as observed by Machnich et al. artificial volcanic ash [56].

3.2.4. Composition of the fluorite phases

For all of the studied temperatures and durations, the formed fluorite is rich in zirconium, RE and calcium. Gd and Y are lost in the pyrochlore and fluorite phases due to RE diffusion in the glass and finally apatite precipitation. Fluorite is obtained through precipitation from dissolved Gd$_2$Zr$_2$O$_7$ or ZrO$_2$∙Y$_2$O$_3$ (ss) in CMAS glass. Ca is dissolved in this fluorite phase.

The composition of the fluorite is only slightly affected by the duration and temperature involved (see Table 3). Only a slight increase in RE content is observed while a concomitant decrease in Ca content in the fluorite is observed as the temperature increases. The nature of rare earth observed is the main parameter, and fluorite formed from...
Gd$_2$Zr$_2$O$_7$ consumes more Ca than 2ZrO$_2$∙Y$_2$O$_3$ (ss) due to the larger rare earth cation size of gadolinium [26].

3.2.5. Compositions of the garnet phases

Garnet phases A$_2$+ B$_3$+[SiO$_4$]$^{4-}$ with A = Ca, Mg and B = Al, Y with a small amount of Zr are identified from WDS measurements and results of the literature [26,29,57,58]. The garnet phase is a transitional phase detected after CMAS reactions with 2ZrO$_2$∙Y$_2$O$_3$ (ss) occur at 1200°C and 1250°C. This metastable phase is detected even after 100h of sintering at 1200°C and is detected in representative proportions (of more than 7%) for up to 24h at 1250°C. This phase mostly contains calcium, yttrium, magnesium, aluminium, silicon and a small amount of zirconium.

It is located mostly found around initial 2ZrO$_2$∙Y$_2$O$_3$ (ss) powder and garnet grains present a gradient of composition with higher ratios of yttrium and zirconium in the centre and with higher calcium and silicon ratios found along edges. According to WDS analyses, minimum and maximum gradients in molar percentages of each element (the rest is oxygen) contribute to garnet phase formation: for 10h at 1250°C, Y = [2.9–4.9 mol%]; Zr = [1.1–4.8 mol%]; Ca = [9.1–10.9 mol%]; Si = [11.3–14.2 mol%]; Al = [4.9–6.1 mol%]; and Mg = [4.3–5.4 mol%] and for 24h at 1250°C, Y = [3.2–7.3 mol%]; Zr = [1.0–1.7 mol%]; Ca = [7.4–10.9 mol%]; Si = [11.7–14.1 mol%]; Al = [5.5–7.9 mol%]; and Mg = [4.5–5.4 mol%].

3.2.6. Residual CMAS composition

As was expected, residual glass is enriched in magnesium and aluminium and is depleted in calcium and silicon (Table 4), which is coherent with depletion observed in calcium and silicon correlated with the formation of Ca, Si-rich apatite phase and Ca-rich fluoride phases.

Yttrium, gadolinium and zirconium are found in small proportions in the glass (1 to 2%) except for yttrium observed after 100h at 1250°C, which is found at 4%. This rather surprising value may be related to the transformation of the garnet phase and must correspond to partial or complete dissolution in the glass. The solubility limit of yttrium for residual CMAS is higher than that of gadolinium (2.3–3.9% vs. 1.6–1.9%). This is in accordance with the literature, and Poerschke specifically found a value of roughly 3.2 mol% for Y solubility (Y from Y$_4$Zr$_3$O$_{12}$) in C$_3$A$_3$M$_9$A$_{13}$S$_4$ and a value of 2.5 mol% for Gd (from Gd$_2$Zr$_2$O$_7$).

4. Discussion

4.1. Morphology of the interaction zone

Spherical product agglomerates form from rapid reactions occurring between CMAS and spherical raw material Gd$_2$Zr$_2$O$_7$ while reaction products spread across the remaining CMAS for 2ZrO$_2$∙Y$_2$O$_3$ (ss). In the literature, slower formation speeds of apatite for Y-based apatite than for Gd-based apatite than for Gd-based apatite have been demonstrated [43]. This is also a consequence of the higher solubility of Y relative to that of Gd in the glass, leading to Gd-apatite crystallization with lower rare earth concentrations in the glass. This study shows that differences in reaction speeds are at stake in the very first stages (<1h) of CMAS interactions occurring between Gd zirconate and 2ZrO$_2$∙Y$_2$O$_3$ (ss).

Such behaviour is similar to that explaining morphologies of

<table>
<thead>
<tr>
<th>System</th>
<th>Annealing temperature</th>
<th>1250°C</th>
<th>1300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration</td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Gd$_2$Zr$_2$O$_7$</td>
<td>REO$_{1.5}$</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>CaO</td>
<td>33</td>
<td>30.2</td>
</tr>
<tr>
<td></td>
<td>SiO$_2$</td>
<td>45</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Si:Ca ratio</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>2ZrO$_2$∙Y$_2$O$_3$ (ss)</td>
<td>REO$_{1.5}$</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>33</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>CaO</td>
<td>45</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>9</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Si:Ca ratio</td>
<td>13</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Table 3

Molar ratio of cations in the fluorite phases depending on temperatures and periods of interaction.

<table>
<thead>
<tr>
<th>System</th>
<th>Annealing temperature</th>
<th>1250°C</th>
<th>1300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration</td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Gd$_2$Zr$_2$O$_7$</td>
<td>REO$_{1.5}$</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>CaO</td>
<td>33</td>
<td>30.2</td>
</tr>
<tr>
<td></td>
<td>SiO$_2$</td>
<td>45</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>9</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Si:Ca ratio</td>
<td>13</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>2ZrO$_2$∙Y$_2$O$_3$ (ss)</td>
<td>REO$_{1.5}$</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>ZrO$_2$</td>
<td>33</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>CaO</td>
<td>45</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
<td>9</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Si:Ca ratio</td>
<td>13</td>
<td>14.2</td>
</tr>
</tbody>
</table>
interaction zones in the pellets. Indeed, for gadolinium zirconate products form a continuous layer while a non-continuous product zone is obtained with slower reaction 2ZrO₂·Y₂O₃ (ss).

Then, a simple powder/powder study is representative of real behaviours of the anti-CMAS system. This can be generalized by examining phenomena involving agglomerated anti-CMAS particles over short enough periods to observe the morphology of products formed around dissolving particles.

4.2. Residual glass properties

The composition of residual molten CMAS is modified during the formation of reaction products: by the dissolution-reprecipitation of RE³⁺ and Zr⁴⁺ and through the formation of an apatite phase rich in RE³⁺, Ca²⁺, Si⁴⁺, and Zr⁴⁺ and of a fluorite phase with Zr⁴⁺, RE³⁺ and with a small amount of Ca²⁺. This results in the depletion of Ca²⁺ and Si⁴⁺ cations in the silicate glass. This results in the local super-saturation of magnesium Mg²⁺ and aluminium Al³⁺ cations within the glass.

The viscosity of residual glass observed after long interaction periods (100 h interactions observed at 1250 °C and 1300 °C) was calculated from the GRD model [58]. Under these conditions, SiO₂ concentrations reached 42–43 mol % while Si:Ca ratios reached 1.3 – 1.5. According to calculations, viscosity values of the residual glass (~10⁻² Pa.s) are one range of order lower than those of the initial Cs₂M₆A₁₂S₃₆ (~10⁻¹ Pa.s). Then, the viscosity of the residual glass decreases by one order of magnitude after CMAS interactions with anti-CMAS powders occur. This is expected to largely influence rates of CMAS infiltration observed in porous anti-CMAS materials.

4.3. Metastable phases

The progressive dissolution of rare earth RE³⁺ (RE = Gd or Y) and zirconium Zr⁴⁺ cations from Gd₂Zr₂O₇ and 2ZrO₂·Y₂O₃ (ss) anti-CMAS materials occurs in molten CMAS. As the concentration of RE and Zr ions reaches a critical threshold, disordered fluorite and apatite phase can crystallize from the glass. These two phases are the only phases observed at equilibrium. By contrast, under non-stationary conditions, transition phases are observed. They are found across a larger range of temperatures and periods in a yttrium-based system. These phases can help prevent CMAS infiltration for rapid formation and high temperatures. However, according to the literature garnet phase exhibits slower formation kinetics than Gdapatite [59]. Then, the formation of garnet is not expected to favour CMAS tightness.

Unlike the apatite phase, the garnet phase traps magnesium and aluminium cations from molten CMAS such that reactions necessary to form the garnet phase lead to a less significant decrease in viscosity than that of one order of magnitude observed under steady state conditions. However, within the framework of this study the exact composition of the residual glass could not be measured.

4.4. Role of zirconium cations

Gadolinium zirconate Gd₂Zr₂O₇ and 2ZrO₂·Y₂O₃ (ss) form two reaction products containing zirconium: Zr substituted apatite phase and disordered fluorite phase. The involvement of zirconium in the formation of reaction products for anti-CMAS effects remains unknown. It is deleterious in decreasing the proportion of calcium trapped in apatite relative to zirconium free systems, but it is favourable in forming solid reaction products with lower CMAS proportions.

4.5. Evolution of apatite phase compositions

The apatite phase formula is written as RE₆₋₃[xZr₃⁺[RE₈₋₃[(2·y/ 3)Ca²⁺₄⁺(SiO₄)₆O₁₂] for both yttrium and gadolinium systems. At a steady state, coefficients x, y and z are similar for yttrium and gadolinium systems (cf. paragraph 3.2.3). Equilibrium compositions are valued at Gd₆₋₃[Zr₃⁺(SiO₄)₆O₁₂] and Y₆₋₃[Zr₃⁺(SiO₄)₆O₁₂]. Yttrium apatite requires slightly less rare earth to form than gadolinium-based systems. While this may facilitate anti-CMAS behaviour, the rest of this study shows that it cannot compensate for the difference in reaction kinetics observed between the two systems.

A major difference is detected over short interaction periods: for the yttrium-based system the apatite formula is the same as the equilibrium formula (with 10 h of interaction) while for the gadolinium system apatite formed in the transient state presents more defects (x = 1.4). The system reaches equilibrium after several tens of hours with an x value of 2.

Then, for gadolinium-based zirconates, defect-rich apatite first forms, which correlates with strong kinetics of product formation observed for this system relative to those of yttrium systems.

4.6. Implications for the development of anti-CMAS materials

Rapid kinetics of reaction product formation are needed for anti-CMAS products to be sufficiently CMAS tight during initial infiltration. Then, the nature of the phase observed at equilibrium may not be sufficiently indicative of the efficiency of the system. Kinetics relative to the RE solubility of glass and to apatite phase formation favour gadolinium as noted by other authors [26].

To develop more insight into the capacities of anti-CMAS material, CMAS / anti-CMAS interactions must be observed over very short interaction periods. In situ methods are very difficult and costly to apply under high temperatures. This paper shows that with basic SEM observations capacities of the anti-CMAS system can be assessed from observations of the morphologies of interaction zones positioned around agglomerated raw materials. Such research can provide information that can facilitate the development of anti-CMAS systems.

5. Conclusion

A simple experimental setup for the examination of kinetics of the high temperature potential of anti-CMAS systems was developed. It was efficient to determine the composition and morphology of reaction products observed during initial interaction phases of CMAS / anti-CMAS interaction (1 h or less) and to compare them to steady state conditions.

Under steady state conditions, 2ZrO₂·Y₂O₃ (ss) traps slightly more calcium in formed apatite (1 Ca²⁺ for 2.2 Y³⁺) than gadolinium zirconate Gd₂Zr₂O₇ (1 Ca²⁺ for 2.4 Gd³⁺). However, stronger effects of apatite formation kinetics than anti-CMAS compositions are found in this study.

Gadolinium zirconate interactions with CMAS benefit from the low solubility of gadolinium ions found in CMAS glass and from high rates of apatite reaction kinetics. This results in the formation of large quantities of reaction products from the start of interactions within the vicinity of raw material Gd₂Zr₂O₇. This also leads to the development of a continuous layer of reaction products in Gd₂Zr₂O₇ pellets at the interface between non-reacted gadolinium zirconate pellets and CMAS.

For gadolinium zirconate, apatite with a higher ratio of rare earth forms at the start of the interaction. However, the higher consumption of rare earth for the formation of reaction products does not hinder anti-CMAS performance due to rapid kinetics of apatite formation and low levels of gadolinium solubility found in CMAS. This may even be more favourable, as it results in a lower consumption of Ca and Si in glass and then to a lesser decline in the viscosity of residual CMAS. For both gadolinium zirconate and 2ZrO₂·Y₂O₃ (ss) systems, the composition of respective fluorite does not evolve with time or temperature. The lower kinetics of 2ZrO₂·Y₂O₃ (ss) systems are also illustrated by the larger range of temperatures and periods over which large amounts of metastable phases are found. While these phases are rich in CMAS elements, their formation kinetics are slower than those of gadolinium
apatite and fluoride products, which may explain why garnet formation does not effectively prevent CMAS infiltration.

Differences in transient and steady states of the two studied anti-CMAS systems demonstrate the importance of studying anti-CMAS/CMAS interactions occurring under transient conditions. This is exemplified for gadolinium zirconate and a Zr₂O₂Y₂O₃ (ss) with similar compositions and quantities of reaction products at equilibrium while anti-CMAS behaviours observed under real conditions are better understood thanks to considerable variations in transient states detected.

In addition to evaluating these specific systems, this study proposes a simple experimental approach to the comparative study of anti-CMAS systems. The study of agglomerated powders interacting with CMAS allows one to observe transient states and to evaluate the capacity for anti-CMAS material to prevent CMAS infiltration in real systems. From the proposed approach we discriminate two interpretations of CMAS infiltration on pellets: when a small number of r p e c t r products is present, it occurs due to low kinetics of product formation or from the desired CMAS tightness of reaction products.

Acknowledgements

This work was supported by the French Defence Research Organization (DGA) and by the SAFRAN Group.

We would like to thank the Raimond Causing Microanalysis Centre and specifically S. Gouy and S. Le Blond du Plouy for their assistance with EPMA analyses and SEM-FEG microscopy tasks.

References

Thermal Barrier Coatings, Ph.D. manuscript University of California, Santa Barbara, 2013.

[40] M.H. Habibi, L. Wang, S.M. Guo, Evolution of hot corrosion resistance of YSZ,
Gd$_2$Zr$_2$O$_7$, and Gd$_2$Zr$_2$O$_7$ + YSZ composite thermal barrier coatings in
doi.org/10.1016/j.jeurceramsoc.2012.01.006.

[41] W. Deng, J.W. Fergus, Effect of CMAS composition on hot corrosion behavior of
gadolinium zirconate thermal barrier coating materials, J. Electrochem. Soc. 164

[42] G. Moskal, et al., Characterization of microstructure and thermal properties of

changing the rare earth cation type on the structure and crystallization behavior of

[45] A.R. Krause, X. Li, N.P. Padture, Interaction between ceramic powder and molten
calca-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-re-

[46] R. Wellman, G. Whitman, J.R. Nichols, CMAS corrosion of EB PVD TBCs: identi-
fying the minimum level to initiate damage, Int. J. Refract. Met. Hard Mater 28 (1)

CoatingsforFuel-FlexibleGasTurbineApplications,Ph.D.manuscriptUniversityof

[48] G. Pujol, Elaboration par voie sol-gel de nouvelles barrières thermiques
architecturées présentant des propriétés contre l’infiltration des oxydes CMAS (Ca,
Mg, Al, Si) - Etude de la réparabilité de systèmes endommagés, Ph.D. manuscript

[50] B.E. Scheetz, W.B. White, Characterization of anion disorder in zirconate A$_2$B$_2$O$_7$
compounds by Raman spectroscopy, J. Am. Ceram. Soc. 62 (9–10) (1979) 468–470,

[51] P.E.R. Blanchard, et al., Does local disorder occur in the pyrochlore zirconates?

y$_{1}$z$_{2}$O$_{7}$ system: probed by X-ray diffraction and Raman spectroscopy, J. Solid

[53] B.P. Mandal, A. Banerji, V. Sathe, S.K. Deb, A.K. Tyagi, Order-disorder transition in
Nd$_{2}$Gd$_{2}$Zr$_2$O$_7$ pyrochlore solid solution: an X-ray diffraction and Raman spectro-
1016/j.jssc.2007.07.007.

phase transformation in GdZr$_2$O$_7$, J. Alloys Compd. 487 (1–2) (2009) 595–599,
https://doi.org/10.1016/j.jallcom.2009.08.021.

Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC
jace.13262.

gradation of thermal-barrier coatings by molten deposits, MRS Bull. 37 (10) (2012)