Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/21851

Official URL: https://doi.org/10.1016/j.compositesb.2019.01.056

To cite this version:

Vieille, Benoit and Pujols Gonzalez, Juan-Daniel and Bouvet, Christophe Prediction of the ultimate strength of quasi-isotropic TP-based laminates structures from tensile and compressive fracture toughness at high temperature. (2019) Composites Part B: Engineering, 164. 437-446. ISSN 1359-8368

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
Prediction of the ultimate strength of quasi-isotropic TP-based laminates structures from tensile and compressive fracture toughness at high temperature

B. Vieillea, J.-D. Pujols Gonzalez, C. Bouvet

a INSA Rouen, Groupe de Physique des Matériaux (UMR CNRS 6634), 76801, St Etienne du Rouvray, France
b Institut Clément Ader (UMR CNRS 5312), Université de Toulouse, ISAE-SUPAERO, 10 av. E. Belin, 31055, Toulouse cedex 4, France

Keywords:
Thermoplastic
Fracture mechanics
Failure
Microbuckling
High-temperature

ABSTRACT

This paper is intended to test the capacity of a simple model based on fracture mechanics concepts to predict the ultimate strength of notched hybrid carbon and glass fibers woven-ply reinforced PolyEther Ether Ketone (PEEK) thermoplastic (TP) quasi-isotropic (QI) laminates under different temperature conditions. In such materials, translaminal failure is the primary failure mode driven by the breakage of 0° and 45° oriented fibers in tension as well as the formation of kink-band in compression. Single-Edge-Notched Bending (SENB), Open-Hole-Tensile (OHT) and Open-Hole-Compression (OHC) specimens have been conducted at room temperature (RT) and at a temperature higher than the glass transition temperature (Tg). The Critical Damage Growth model derived from the Average Stress Criterion and Linear Elastic Fracture Mechanics (LEFM) have been applied to open-hole specimens to determine the critical damage zone from which the fracture toughness in tension (0° and 45° fibers breakage) $K_{Ic}^{tension}$ and in compression (kink-band formation) K_{Ic}^{comp} are estimated. In Single Edge Notched Bending (SENB) specimens experience simultaneous tension/compression. From the estimation of $K_{Ic}^{tension}$ and K_{Ic}^{comp}, the ultimate strength of SENB specimens can be predicted. LEFM equations combined with the critical fracture toughness in tension give relatively accurate results, suggesting that failure is driven by fibers bundles breakage in tension.

1. Introduction

The design of composites structures with high gradient of stresses has been extensively studied over the past fifty years. So far, there is no clear cut answer regarding the failure criteria of laminated composites as they may experience many failure modes (matrix cracking, fiber/matrix debonding, fiber breakage, delamination) which may interact and complicate the study of damage growth within the laminates’ layers but also between the layers. Thus, many analytical techniques ranging from complex numerical methods to simplified semi empirical fracture models have been proposed in the literature to predict the ultimate strength of composite structures [1]. Among the semi empirical approaches simple to implement [2-11], most of them deal with tension or compression loadings. The most commonly used criteria are Point Stress Criterion (PSC) and Average Stress Criterion (ASC) initially developed by Whitney and Nuismers [10,11]. These criteria have been successfully applied to composites by many authors [1,9,12,13]. Simlarly, Waddoups et al. assumed the existence of damaged (inherent flaw) regions whose size c is modelled as a through crack of constant length developing at the edges of the hole in the transverse direction [4,14]. Bowie et al. applied this model to isotropic and homogeneous materials [15]. Based on an effective crack growth model [16], Belmonte developed a Critical Damage Growth model for evaluating the residual strength of open hole composite laminates [5]. This model is physically meaningful, as it only requires the knowledge of the strength of the unnotched laminates and an estimate of the mode I critical fracture toughness of the laminate. Early in the sixties Wu showed that the concepts of fracture mechanics developed for isotropic materials can be applied to unidirectional composite materials provided a few conditions are fulfilled such as the orientation of the notch with respect to the orthotropic axis. In addition, the stress intensity factors of orthotropic materials must be consistent with the isotropic case in stress distribution and in crack displacement modes [17]. According to Waddoups et al., the damage state of the material in the region of intense macroscopic stresses is unknown due to material heterogeneity [14]. However, the material’s fracture toughness is assumed constant.

https://doi.org/10.1016/j.compositesb.2019.01.056
for a transverse crack and may be obtained from the strain energy release rate G which is expected to be a function of laminate stacking sequence. To the author’s best knowledge, simplified semi empirical fracture models have been only applied to open hole tensile specimens but never to single edge notch specimens.

One of the main drawbacks of the previous models is their incapability to account for size effects [18]. Camanho et al. compared a continuum damage model with alternative approaches: the point stress criterion, the inherent flaw model, the Linear Elastic Fracture Mechanics and the strength of materials approaches. Their results show that a continuum damage model is the most accurate technique to predict the ultimate strength and the size effects of notched composites. In addition, it does not require any calibration and it is applicable to general geometries and boundary conditions. However, it is based on finite element computations and it is not straightforward to apply from experimental results.

1.1. Experimental evaluation of the mode I critical fracture toughness

Most of the simplified semi empirical fracture models require the estimate of the mode I critical stress intensity factor K_c which is usually derived from analytical functions depending on specimen geometries and loading conditions [19]:

$$K_c = \sigma_{remote} \sqrt{\pi a} \cdot F(a/w)$$

(1)

where σ_{remote} is the remote applied stress, a denotes the length of the initial crack and w is the specimen width [4]. $F(a/w)$ is a geometric finite width correction (FWC) function [20]. In Single Edge Notch Bending (SENB) specimens, $F(a/w)$ is obtained from an empirical formula classically used in the literature [20]:

$$F(a/w) = \frac{1}{\sqrt{a}} \cdot \frac{1.99 - (a/w)(1 - a/w)(2.15 - 3.93 \cdot a/w + 27 \cdot (a/w)^2)}{(1 + 2 \cdot a/w)(1 - a/w)^{3/2}}$$

(2)

Finally, the stress concentration factor K_i for Mode I type loading [4,20] is defined by:

$$K_i = \frac{\sigma_i(r, \theta = 0)}{\sigma_{remote}} \cdot F(a/w)$$

(3)

where r is the radius of the notch at the crack tip and σ_{remote} is the remote applied stress far from the notch.

From the knowledge of the critical fracture toughness in tension or compression, the ultimate strength of SENB specimens can be predicted from Eq. (2):

$$\sigma_{remote} = \frac{K_{tension or compression}}{\sqrt{\pi a}} \cdot F(a/w)$$

(4)

At initiation, LEFM equations can be applied to quantify tensile failure (associated with the breakage of 0° fibers) as the thermomechanical response is elastic quasi brittle to estimate $K_{tension}$. However, it is a strong approximation to apply them in the case of compressive failure as the formation of kink bands and the crushing of 0° fibers are the primary failure mechanisms for which the mechanical behavior is not linear anymore [21]. Thus, LEFM was applied to account for the unstable kink band growth when the stress intensity factor at the kink band tip is higher than the critical compressive fracture toughness K_{comp} associated with the kink band formation.

Compact tension and compact compression specimens are classically used to estimate the fracture toughness associated with the transgranular failure of 0° fibers in tension (fibers breakage) $K_{tension}$ and in compression (kink band formation) K_{comp} [22, 26]. However, the obtained values are very sensitive to specimen geometry and these tests require specific tools to be clamped to the grips of the testing machine. These specimens are also prone to twisting and buckling when subjected to tension and compression respectively. Thus, it is more straightforward to conduct tensile and compressive tests on open hole specimens with different hole diameters to estimate $K_{tension}$ and K_{comp}.

In orthotropic materials, the strain energy release rate G_c and the stress intensity factor K_c are related to the engineering constants as follows [27]:

$$G_c = \frac{1}{2} \frac{1}{E_y} \left(\frac{K_{tension}}{\sqrt{a}} \right)^2$$

(5)

with $G_c = \frac{1}{2} \frac{1}{E_y} \left(\frac{K_{tension}}{\sqrt{a}} \right)^2$ in plane stress conditions. As is based on the assumption of a linear elastic behavior, this relationship is rather well fulfilled in the case of a tensile failure. As was previously underlined, the use of Eq. (5) is a strong approximation in the case of a compressive failure.

Failure primarily consists of simultaneous tensile breakage of 0° fibers and compressive kinking of 0° fibers in SENB specimens (see Fig. 1a). $\sigma_{tension}$ and σ_{comp} are the equivalent crack lengths associated with tension and compression respectively. $\Delta K_{dissipated}$ represents the energy dissipated during fracture (see Fig. 1b).

1.2. Fracture toughness in open hole tensile specimens

The methods to estimate fracture toughness in open hole specimens differ from the one presented in the above section. For example, the simplified semi empirical fracture models introduced in section 1.1 are based upon the stable growth and subsequent catastrophic failure of a damage zone at the edge of central open hole specimens [5]. In the present case, the Critical Damage Growth (CDG) model is interesting for many reasons:

(i) the failure criterion is based on LEFM principles,
(ii) its parameters are physically meaningful,
(iii) it can be applied to both tensile and compressive loadings.

This approach combines the remote applied stress σ_{remote} and the corresponding critical damage zone size c which can be obtained from the Average Stress Criterion [20]. This model can be applied to quasi isotropic laminates to determine the length of the critical damage zone and to compute the mode I critical fracture toughness either in tension K_{IC}^{remote} or in compression K_{IC}^{comp}.

Firstly, the average stress criterion (ASC) assumes that failure occurs when the average stress, over a distance c, away from the notch is equal or greater than the strength of the unnotched laminate $\sigma_{unnotched}$. The effective crack length c depends on the diameter of the hole. The remote applied stress σ_{remote} required to grow a damage zone or crack to a length c (see Fig. 2), from the edge of the hole (whose radius is r) is defined using an average stress argument and is given by:

$$\sigma_{remote} = \frac{1}{c} \int_{c}^{\infty} \sigma_{r} \, dx = \frac{1}{c} \int_{c}^{\infty} \sigma_{r} \cdot F_{r} \, dx$$

(6)

Where σ_{r} is the longitudinal stress adjacent to the notch edge in a finite plate [4] which can be determined from the analytical expression of the longitudinal stress adjacent to the notch edge in an infinite plate σ_{r}^{∞} [20], and a Finite Width Correction (FWC) factor $F_{r} = E_{r}/(rp_{r})$. Indeed, the stress concentration factor at the edge of the hole K_{p} in orthotropic infinite plates is defined from the mechanical properties of the equivalent orthotropic material (see Table 3) as follows [1,19,20]:

$$K_{p}^{F} = 1 + \frac{2}{M} \left[\frac{E_{r}}{E_{t}} - \nu_{r} \right] + \frac{E_{r}}{G_{xy}}$$

(7)

In the case of orthotropic specimens with a finite width w containing a central circular hole with a diameter d, Tan has proposed the following approximate expressions of the FWC factor [20]:

$$F_{0} = \frac{3(1 - d/w)}{2 + (1 - d/w)^{2}} \left[1 - \left(\frac{d}{w} \right)^{M} \right]^{2} \left(\frac{d}{w} \right)^{M}$$

(8)

where the coefficient M is obtained from the following equation:

$$M = \sqrt{1 - 8 \left[\frac{2(1 - d/w)}{2 + (1 - d/w)^{2}} - 1 \right]} - 1$$

(9)

Secondly, the ultimate remote stress σ_{remote}^{u} required to observe a catastrophic failure in the case of cracks emanating from a circular hole (whose radius is r) is associated with the mode I critical fracture toughness K_{IC} by the following equation [4,20]:

$$K_{IC} = \sigma_{remote}^{u} \sqrt{2\pi} \cdot F_{1} \cdot F_{2} \cdot \frac{c}{c + r}$$

(10)

where F_{1} is a correction factor determined in the case of isotropic materials for cracks [15], whose length c is growing from a circular hole [4]:

$$F_{1} = \frac{(3 - s)}{2} \left[1 + 1.243 \left(1 - s^{2} \right) \right] \text{with} \ s = \frac{c}{c + r}$$

(11)

and the FWC factor F_{2} is given by:

$$F_{2} = \sqrt{\frac{\pi R}{2w} \sec \left(\frac{\pi (R + c)}{2w} \right)}$$

(12)

The estimation of the critical fracture toughness K_{IC} by Eq. (10) depends on the geometry, the loading conditions and the length of the critical damage zone c [9,12].

1.3. Fracture toughness in open hole compressive specimens

In the case of Open Hole Compression tests, following an idea similar to the one proposed by Belmonte [5], Soutis developed a kink band propagation model to compute the OFC strength from the hole diameter, the unnotched compressive strength $\sigma_{comp}^{unnotched}$ and the kink band compressive toughness K_{IC}^{comp} (see Fig. 3).

For stable kink band growth, the ASC criterion (Eq. (7)) is considered to compute the length of the critical damage zone c near the hole. In the present case, the average stress criterion stipulates that the stable kink band growth occurs when the magnitude of the average stress over the kink band (whose length is c) equals that of the unnotched laminate compressive strength $\sigma_{comp}^{unnotched}$ [28]. The LEFM approach can be applied to account for the unstable kink band growth when the stress intensity factor at the kink band tip is higher than the compressive fracture toughness K_{IC}^{comp} associated with the kink band formation. It is also possible to estimate K_{IC}^{comp} by means of the micromechanics model for fiber microbuckling initially proposed by Budiansky [28,29], Soutis considered the response of an open hole specimen subjected to a compressive loading [25,29]. The unnotched compressive strength σ_{comp} of long fiber reinforced polymer composites is primarily driven by fiber microbuckling. Such microbuckling results from the plastic deformation of the polymer matrix in shear pre-ferentially initiated in the region of fibers waviness. According to Rice [30], the energy required to extend a crack can be estimated from the stress vs crack displacement curve (see Fig. 4a) assuming that the compressive stress changes linearly with the displacement (which is a rough approximation of what is observed experimentally during compressive failure):

$$F_{1} = \frac{(3 - s)}{2} \left[1 + 1.243 \left(1 - s^{2} \right) \right] \text{with} \ s = \frac{c}{c + r}$$

(11)

and the FWC factor F_{2} is given by:

$$F_{2} = \sqrt{\frac{\pi R}{2w} \sec \left(\frac{\pi (R + c)}{2w} \right)}$$

(12)

The estimation of the critical fracture toughness K_{IC} by Eq. (10) depends on the geometry, the loading conditions and the length of the critical damage zone c [9,12].
\[G_{Ic} = 2 \int_0^{v_c} \sigma(v) \, dv = \sigma_{\text{rem}} \, v_c \]

(13)

Where \(v_c \) represents the critical Crack Closing Displacement (CCD) also known as the crack overlap displacement \(\delta_c \), which is associated with the formation of the kink band during the fiber rotation (see Fig. 4b). Assuming that fibers rotation \(\varphi \) complies with the rotation of a rigid perfectly plastic body under a compressive remote stress \(\sigma_{\text{remote}} \), the critical crack overlap displacement \(\delta_c \) is equal to the kink band width.

1.4. Objectives of the study

Based on LEFM equations, this study deals with the ultimate strength of Single Edge Notched Bending specimens consisting of carbon/glass/PEEK thermoplastic hybrid laminated composites. In quasi isotropic laminates, failure is expected to be driven by the breakage of 0° and 45° oriented fibers bundles in tension as well as the formation of kink band in compression. The influence of temperature on matrix ductility and fracture toughness is examined. In order to predict the ultimate strength of SENB specimens experiencing both tensile and compressive failure, it is necessary to evaluate the mode I critical fracture toughness in tension \(K_{Ic}^{\text{tension}} \) and in compression \(K_{Ic}^{\text{comp}} \) whose values can be computed from the combined application of the Average Stress Criterion and LEFM equations.

2. Materials, specimens and tests procedure

2.1. Materials

The laminated plates obtained by thermo compression are made up of carbon (Tenax® E HTA40 3K) PEEK SHS woven plies prepregs and glass PEEK prepregs (see Table 1). The consolidated laminates consist of 14 inner carbon PEEK plies and two outer glass PEEK plies [31,32]. In addition, the carbon and glass fiber fabrics are balanced in the warp and weft directions. The stacking sequence of laminates is quasi isotropic: [((0/90), ((0/90), (± 45)), (0/90))]s (with G index for glass fibers ply). The average thickness of laminates is about 4.5 mm.

2.2. Specimens

The test specimens were cut by water jet from 600 × 600 mm² plates. The machining of the single edge notches in SENB specimens (see Fig. 5a) was done by means of a precision endless diamond wire saw whose radius is 0.085 mm. The initial notch length to specimen width ratio \(a/w \) ranges from 0.2 to 0.5. In OHT and OHC specimens (see Fig. 5b), central circular holes were drilled by means of a diamond tool (drill bit), which is known to minimise damage near the hole [33]. Specimens have different ratio \(d/w \) (ranging from 0.1 to 0.4) of the hole diameter over the specimen width.

2.3. Methods and experimental set up

2.3.1. Thermo mechanical testing

Open hole tensile, compressive and bending tests were performed using a 100 kN capacity load cell of a MTS 810 servo hydraulic testing machine in displacement controlled mode and with a temperature control system. Mechanical tests were applied to notched specimens at Room Temperature (RT) and 150 °C. The studied composite material being considered for applications in aeronautics (e.g. engine’s nacelle), it can be used up to 150 °C > \(T_g \) of C/PEEK (=143 °C), as detailed in

<table>
<thead>
<tr>
<th></th>
<th>Carbon/PEEK</th>
<th>Glass/PEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_x) (GPa)</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>(E_y) (GPa)</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>(G_{xy}) (GPa)</td>
<td>4.8</td>
<td>6.55</td>
</tr>
<tr>
<td>Tensile strength (warp) (MPa)</td>
<td>963</td>
<td>1172</td>
</tr>
<tr>
<td>Compressive strength (warp) (MPa)</td>
<td>725</td>
<td>1103</td>
</tr>
<tr>
<td>Nominal ply thickness (mm)</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td>(T_g) (°C)</td>
<td>143</td>
<td>143</td>
</tr>
</tbody>
</table>

Table 1 A few properties of woven carbon and glass fibers reinforced PEEK elementary ply at RT.
and (MPa) E_y increases, the residual strength (% G_{xy} (GPa) ε_x σ (GPa) ν_x w_{acomp} 1 w was speci... and strain at failure in tension. In

3. Results and discussion

3.1. Tensile and compressive macroscopic thermo mechanical responses

For both testing conditions, unnotched laminates are characterized by an elastic behavior until failure in tension [32], and a slightly elastic plastic behavior in compression. Based on the standards introduced in section 2.1, the mechanical properties in tension and compression of unnotched CG/PEEK quasi isotropic laminates can be determined depending on testing temperature (see Table 2). It appears that temperature has moderate influence (about −10%) on longitudinal stiffness, ultimate strength $\sigma_{ult,tension}$ and strain at failure in tension. In compression, the influence of temperature is particularly significant on the ultimate compressive strength and the strain at failure (about −25%). From the macroscopic response standpoint, OHT specimens also exhibit elastic brittle behavior at both test temperatures [32]. Temperature influences both macroscopic mechanical response and properties of open hole specimens due to local softening of the PEEK matrix at high temperature. As ratio d/w increases, the residual strength decreases by 30−50% suggesting that the stress concentration due to the hole significantly influences its strength. Indeed, the hole sensitivity (indicated in % on Fig. 6) represents the decrease in the ultimate strength of OHT specimens with respect to the notch insensitive case (computed from the net section and the ultimate strength of the unnotched specimens). It appears to be virtually the same at both temperatures. It therefore suggests that the effect of stress concentration is temperature independent in CG/PEEK quasi isotropic laminates whose mechanical tensile response is fiber dominated.

Under compressive loading, as was observed in unnotched specimens, the behavior of OHC specimens is elastic with noticeable plastic deformation due to the formation of local plastic kink band as further detailed in the next section (see Fig. 7). A ratio $d/w = 0.4$ was specifically chosen to promote the breakage of 0° fibers bundles and to avoid a macroscopic buckling. For both temperatures, the residual strength in Open Hole specimens is 65% lower than the one observed in unnotched specimens subjected to compression. The influence of the stress concentration being the same on the residual compressive strength, it tends to prove that the hole sensitivity is not temperature dependent though the local ductility of the PEEK matrix is significantly enhanced at temperature higher than its T_T. However, the effect of a temperature increase is significant on both macroscopic mechanical response and properties of OHC specimens as a temperature increase promotes the formation of plastic kink bands at high temperature.

3.2. Tensile and compressive failure behavior in open hole specimens

Before estimating the influence of matrix ductility on fracture toughness in tension and in compression, it seems relevant to investigate the effect of a temperature increase on the failure mechanisms in Open Hole specimens. In unnotched quasi isotropic laminates subjected to tensile loadings, the mechanical load is primarily (about 73%) borne by the 0° fibers bundles [4] hence justifying a low temperature dependence of the mechanical response. In compression, the specific damage mechanisms associated with compressive loading (local microbuckling, formation of a plastic kink band) results from the locally ductile behavior of the PEEK matrix which is enhanced by a temperature increase. In open hole specimens, temperature does not influence the hole sensitivity in tension and compression though the failure mechanisms are different. In OHT specimens, the mode I translamellar failure is the primary failure mode. It results from the breakage of fibers bundles in 0° and 45° oriented plies as well as the pull out of 45° fibers bundles in the 45° oriented plies (see Fig. 8). X Rays tomographic observations show that the 0° and 45° oriented plies have different contribution to the fracture behavior of quasi isotropic CG/PEEK laminates (see Fig. 9). A translamellar crack can be observed in 0° plies (see Fig. 9a) suggesting the catastrophic failure of 0° fiber bundles initiated from the stress concentration in the vicinity of the hole (see Fig. 9c). In 45° oriented plies, the fracture surface reveals that splitting...

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Mechanical properties of the equivalent orthotropic material – Quasi-isotropic CG/PEEK laminates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (GPa)</td>
<td>E_y (GPa)</td>
</tr>
<tr>
<td>RT</td>
<td>49.58</td>
</tr>
<tr>
<td>150 °C</td>
<td>45.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Mechanical properties in tension and compression of unnotched CG/PEEK quasi-isotropic laminates depending on testing temperature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>Compression</td>
</tr>
<tr>
<td>E_x (GPa)</td>
<td>σ_x^u (MPa)</td>
</tr>
<tr>
<td>RT</td>
<td>52.57 ± 0.58</td>
</tr>
<tr>
<td>150 °C</td>
<td>48.30 ± 1.16</td>
</tr>
</tbody>
</table>

Fig. 6. Influence of temperature on the residual strength of Open-Hole-Tensile laminates.
(longitudinal intralaminar matrix cracking) occurs in the 45° fibers bundles located in the overstressed region near the hole (see Fig. 9b). Further from the hole edge, 45° broken fibers can be observed as well as 45° fibers pull out along the edges. The onset of transalaminar failure occurs when the stress intensity factor in tension reaches its critical value $K_{Ic}^{tension}$ for which both 0° and 45° oriented plies seem to have a specific contribution to the macroscopic transalaminar crack (see Fig. 8). Indeed, fracture surface is characterized by the breakage of 0° fiber bundles in 0° plies, whereas it is associated with the breakage of 45° fibers in 45° plies, suggesting that the transalaminar cracks follow different paths depending on fibers bundles orientation.

In OHC specimens, the microscopic observations of the specimen’s edges show that the fracture mechanisms are very different depending on the testing temperature. At RT, the breakage of 0° fibers and delamination are the primary failure modes (see Fig. 10a). They ultimately come along with the crushing of 0° fibers on the outer surfaces of the laminates. A zoom on the damage area reveals that there is no significant micro buckling, but also confirms that failure is driven by the breakage of 0° fibers bundles (see Fig. 11a). At 150 °C, the formation of macroscopic plastic kink band is the primary failure mode (see Figs. 10b and 11b). As indicated in section 3.1, the softening and the ductile behavior of the PEEK matrix is exacerbated at $T > T_g$. Such behaviors facilitate the initiation of micro buckling at the ply level, resulting in the formation of plastic kink bands. As pointed out in section 1.4, the kink band growth depends on two competing mechanisms. Hole sensitivity being temperature independent in OHC specimens, it suggests that the kink band growth is primarily driven by the critical stress intensity factor in compression K_{Ic}^{comp}. From the present analysis, it is therefore utmost important to evaluate $K_{Ic}^{tension}$ and K_{Ic}^{comp} at both test temperatures to quantify the energy dissipated during fracture.

Fig. 7. Mechanical response of Open-Hole specimens with different ratio d/w subjected to compression: (a) RT – (b) 150 °C.

Fig. 8. Microscopic observations of Open-Hole specimens ($d/w = 0.3$) subjected to tension.

Fig. 9. Tomographic observations of Open-Hole specimens ($d/w = 0.3$) subjected to tension.
3.3. Estimation of the critical fracture toughness in tension K_{Ic}^{tension} and in compression K_{Ic}^{comp}.

The Crack Growth Damage model introduced in section 1.4 can be applied either to Open Hole Tensile (OHT) or to Open Hole Compressive (OHC) specimens [3,5] in order to compute the fracture toughness associated with the translaminar failure of 0° fibers in tension (fibers breakage) K_{Ic}^{tension} and in compression (kink band formation) K_{Ic}^{comp}. The main difficulty primarily consists of determining the length of the critical damage zone c near the hole depending on the stress concentration (hence the hole diameter) in both cases.

In OHT specimens, the damage zone length c obtained from the Average Stress Criterion (see section 1.4) linearly increases as the ratio d/w increases (see Fig. 12). The standard deviation is relatively low at both temperatures. Compared with the values computed at RT, the fracture toughness in tension is about 10% lower at 150 °C (see Table 4 and Table 5), which is consistent with the influence of temperature on the ultimate tensile strength discussed in section 3.2.

In OHC specimens, the idea proposed by Budiansky [28,29] was to calculate the width of the kink band w (in mm) from the properties of Fig. 10. Front and edge views microscopic observations of Open-Hole-Compression specimens: (a) RT – (b) 150 °C.

![Fig. 10. Front and edge views microscopic observations of Open-Hole-Compression specimens: (a) RT – (b) 150 °C.](image)

![Fig. 11. Zoom on the damage regions of Open-Hole-Compression specimens: (a) RT – (b) 150 °C.](image)

![Fig. 12. Influence of temperature on the damage zone length and the fracture toughness in tension K_{Ic}^{tension} from OHT specimens with different ratio d/w.](image)

<table>
<thead>
<tr>
<th>d/w</th>
<th>c (mm)</th>
<th>$F_1(c)$</th>
<th>$F_2(c)$</th>
<th>K_{Ic}^{tension} (MPa.m$^{1/2}$)</th>
<th>Mean value K_{Ic}^{tension} (MPa.m$^{1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>984 ± 22</td>
<td>0.1</td>
<td>1.27</td>
<td>1.01</td>
<td>37.16</td>
</tr>
<tr>
<td>0.2</td>
<td>460 ± 8</td>
<td>2.23</td>
<td>1.30</td>
<td>1.04</td>
<td>41.07</td>
</tr>
<tr>
<td>0.3</td>
<td>304 ± 3</td>
<td>3.13</td>
<td>1.32</td>
<td>1.09</td>
<td>43.49</td>
</tr>
<tr>
<td>0.4</td>
<td>244 ± 4</td>
<td>4.04</td>
<td>1.33</td>
<td>1.17</td>
<td>42.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d/w</th>
<th>c (mm)</th>
<th>$F_1(c)$</th>
<th>$F_2(c)$</th>
<th>K_{Ic}^{comp} (MPa.m$^{1/2}$)</th>
<th>Mean value K_{Ic}^{comp} (MPa.m$^{1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>664 ± 29</td>
<td>0</td>
<td>1.19</td>
<td>1.02</td>
<td>39.72</td>
</tr>
<tr>
<td>0.1</td>
<td>440 ± 10</td>
<td>1.78</td>
<td>1.31</td>
<td>1.04</td>
<td>38.66</td>
</tr>
<tr>
<td>0.2</td>
<td>345 ± 3</td>
<td>2.14</td>
<td>1.31</td>
<td>1.04</td>
<td>38.15</td>
</tr>
<tr>
<td>0.3</td>
<td>284 ± 6</td>
<td>2.55</td>
<td>1.40</td>
<td>1.07</td>
<td>34.49</td>
</tr>
<tr>
<td>0.4</td>
<td>225 ± 4</td>
<td>2.69</td>
<td>1.50</td>
<td>1.11</td>
<td>34.49</td>
</tr>
</tbody>
</table>

![Table 4](image)

![Table 5](image)
Table 6: Features and properties of carbon-fibers reinforced PEEK laminates.

<table>
<thead>
<tr>
<th>Fiber diameter d_f (µm)</th>
<th>Fibers volume fraction V_f</th>
<th>Fiber’s Young modulus E_f (GPa)</th>
<th>Compressive strength σ_u (MPa)</th>
<th>Compressive modulus E_c (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>7</td>
<td>0.5</td>
<td>230</td>
<td>716</td>
</tr>
<tr>
<td>150 °C</td>
<td>7</td>
<td>0.5</td>
<td>230</td>
<td>542</td>
</tr>
</tbody>
</table>

Table 7: Estimation of the kink-band width from the Budiansky micromechanics approach applied to orthotropic C/PEEK laminates subjected to compressive loading at RT and 150 °C.

<table>
<thead>
<tr>
<th>τ_y (MPa)</th>
<th>Kink-band width w (µm)</th>
<th>K_{IC}^{comp} (MPa $\cdot \mu$m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT 112</td>
<td>44</td>
<td>30.59</td>
</tr>
<tr>
<td>150 °C 58</td>
<td>55</td>
<td>29.24</td>
</tr>
</tbody>
</table>

Table 8: Estimation of the mode I fracture toughness in compression from Open-Hole CG/PEEK laminates at RT and 150 °C.

<table>
<thead>
<tr>
<th>a/w</th>
<th>σ_u^c (MPa)</th>
<th>Kink-band length c (mm)</th>
<th>K_{IC}^{comp} (MPa $\cdot \mu$m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Crack Growth 0</td>
<td>573 ± 13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Damage model 0.4</td>
<td>197 ± 3</td>
<td>2.65</td>
</tr>
<tr>
<td>150 °C</td>
<td>Crack Growth 0</td>
<td>434 ± 22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Damage model 0.4</td>
<td>153 ± 7</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>Budiansky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13: Evolution of the residual strength and the stress concentration factor in SENB specimens: influence of temperature and initial ratio a/w.

3.4. Fracture behavior of SENB specimens

The influence of temperature on the residual strength is limited except for a ratio $a/w = 0.5$ for which a temperature increase contributes to a 20% increase of the bending strength (see Table 9). The influence of stress concentration on the residual strength (indicated in % on Fig. 13) is lower at high temperatures with a maximum decrease of 35 56% with respect to the notch insensitive case. Contrary to what was observed in OHT specimens, it also suggests that notch sensitivity is temperature dependent in SENB specimens, probably due to the contribution of compressive failure (the formation of kink band is temperature dependent) to the failure in bending [32].

Based on a Digital Image Correlation analysis, the longitudinal strain distribution at the surface of SENB specimens can be computed from the Vic2D software. It appears that the upper part of specimens is subjected to compression whereas the lower part is subjected to tension (see Fig. 14). In addition, a tomographic observation of the 0° plies reveals a local crushing of laminates’ upper edges in the contact area with upper cylinder. As a/w ratio increases (typically from $a/w = 0.3$), the stress concentration factor K_t increases as well (see Fig. 13), and promotes a translamellar failure dominated by the tensile breakage of 0° carbon fibers. No visible damage can be observed on upper edges of these specimens as the bending stress is lower than the crushing stress [32]. As introduced in section 1.2, $a_{tension}$ and a_{comp} are the equivalent crack lengths associated with tension and compression respectively (see Fig. 14), illustrating that SENB specimens experience both tensile and compression failure mechanisms.

Table 9: Prediction of the ultimate strength of quasi-isotropic CG/PEEK laminates subjected to three points bending at RT – Computation from the mode I critical fracture toughness in tension at RT and 150 °C.

<table>
<thead>
<tr>
<th>$F(a/w)$</th>
<th>RT</th>
<th>150 °C</th>
<th>Influence of T on σ_u^c (exp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_u^{exp} (MPa)</td>
<td>$\sigma_u^{predicted}$ (MPa)</td>
<td>σ_u^{exp} (MPa)</td>
</tr>
<tr>
<td>0</td>
<td>731 ± 5</td>
<td></td>
<td>598 ± 14</td>
</tr>
<tr>
<td>0.1</td>
<td>632 ± 6</td>
<td>595 (6%)</td>
<td>562 ± 6</td>
</tr>
<tr>
<td>0.2</td>
<td>486 ± 10</td>
<td>429 (13%)</td>
<td>472 ± 19</td>
</tr>
<tr>
<td>0.3</td>
<td>377 ± 10</td>
<td>331 (14%)</td>
<td>361 ± 5</td>
</tr>
<tr>
<td>0.4</td>
<td>269 ± 6</td>
<td>254 (6%)</td>
<td>274 ± 2</td>
</tr>
<tr>
<td>0.5</td>
<td>162 ± 8</td>
<td>189 (+14%)</td>
<td>193 ± 4</td>
</tr>
</tbody>
</table>
compressive failure. Finally, based on the estimation $K_{IC}^{tension}$ and $K_{IC}^{compress}$ computed in section 3.3, the ultimate strength of SENB specimens σ_{ult} can be predicted from Eq. (4) with a relatively good accuracy in comparison with the results obtained from the critical fracture toughness in compression (see Table 9 and Fig. 15).

4. Conclusions

In the framework of the Linear Elastic Fracture Mechanics, the main purpose of this work was to predict the ultimate strength of Single Edge Notch Bending quasi isotropic laminates consisting of hybrid carbon/glass/PEEK thermoplastic composites intended to be used in aeronautics in high temperature service conditions ($T > T_g$). The main conclusions are summarized as follows:

- Translaminar failure is the primary failure mode in SENB specimens which experience simultaneous tensile and compressive quasi brittle failures. At both test temperatures, failure is driven by the breakage of 0° and 45° oriented fibers in tension as well as the formation of kink bands in compression.
- Compressive failure being primarily matrix dominated (hence temperature dependent), failure in bending (hence the corresponding fracture toughness) is modified by a temperature increase.
- A simple model derived from fracture mechanics concepts combined with a critical damage zone (determined from the Average Stress Criterion) has been implemented. It was applied to quantify the critical fracture toughness in tension $K_{IC}^{tension}$ and in compression $K_{IC}^{compress}$ based on experimental data obtained from Open Hole Tensile and Compressive tests conducted at room temperature and 150 °C.

Fig. 14. Evolution of the longitudinal Green-Lagrange strain distribution and the translaminar crack in SENB specimens at 150 °C ($a/w = 0.3$): (a) macroscopic mechanical response – (b) tomographic observation of the 0° fibers plies

Fig. 15. Comparison of the predicted and experimental residual strengths of SENB specimens with different ratio a/w: (a) from $K_{IC}^{tension}$ – (b) from $K_{IC}^{compress}$.
(T > Tg). The ultimate strength of TP thermoplastic composites structures is simply predicted with a relatively good accuracy from the critical fracture toughness in tension and compression.

The present study is expected to be a contribution towards the design of high performance TP laminates for aeronautical applications under high temperature conditions.

References