Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: http://oatao.univ-toulouse.fr/21779

Official URL: https://doi.org/10.1016/j.ensm.2018.08.022

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator:
tech-oatao@listes-diff.inp-toulouse.fr
Synthesis of T-Nb$_2$O$_5$ thin-films deposited by Atomic Layer Deposition for miniaturized electrochemical energy storage devices

Saliha Ouendiaa,b, Cassandra Aricoa,b,d, Florent Blanchardc, Jean-Louis Codrona, Xavier Wallarta, Pierre Louis Tabernab,d, Pascal Rousselc, Laurent Claviera, Patrice Simonb,d,*, Christophe Lethiena,b,*

a Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
b Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR 3459, 33 rue Saint Leu, 80039 Amiens Cedex, France
c Unité de Catalyse et de Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, ENSCL, Université d’Artois, UMR 8181 UCCS, F-59000 Lille, France
d Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), CNRS UMR 5085 Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France

Keywords: Atomic Layer Deposition, Nb$_2$O$_5$, Micro-devices, Surface capacity

Abstract

Atomic Layer Deposition has been used to grow 30 to 90 nm thick amorphous Nb$_2$O$_5$ films onto Pt current collectors deposited on Si wafer. While T-Nb$_2$O$_5$ polymorph is obtained by further annealing at 750 °C, the film thickness and the resulting electrode areal capacity are successfully controlled by tuning the number of ALD cycles. The electrochemical analysis reveals a lithium ion intercalation redox mechanism in the T-Nb$_2$O$_5$ electrode. An electrode areal capacity of 8 μAh cm$^{-2}$ could be achieved at 1 C, with only 40% capacity loss at 30 C (2 minutes discharging time). This paper aims at demonstrating the use of Atomic Layer Deposition method in the fabrication of Nb$_2$O$_5$ based on chip micro devices for Internet of Things (IoT) applications.

1. Introduction

Li ion micro batteries [1-3] (MB) and micro supercapacitors [4-10] (MSC) are two complementary electrochemical energy storage (EES) miniaturized systems. While MB offers high energy and lower power densities, MSC are particularly attractive for applications where high power is needed but suffer from limited energy density. Charge storage processes occurring in MB and MSC are totally different in nature leading to complementary properties. MSC based on ion adsorption/desorption in carbon porous electrodes [8,11,12] offer great cyclability and high power densities; such miniaturized EES are characterized by rectangular shape cyclic voltammograms and linear galvanostatic charge discharge profiles. Similar features are observed with MSC based on pseudocapacitive materials [6,7,13] where fast redox surface reactions are responsible for the continuous change of oxidation state of the electrode material [14,15], without any phase change during cycling. Different, faradic reactions taking place in the bulk of active materials lead to redox peaks and flat plateaus are observed during voltammetry and constant current charge discharge experiments, respectively. Such charge storage process is often accompanied by a phase transformation of the electrode material (LiCoO$_2$, LiMn$_2$O$_4$, LiFePO$_4$, LiMn$_{1.5}$Ni$_{0.5}$O$_4$, TiO$_2$...) depending also of the particle size [16-18]. In such materials, the control of the crystallographic structure and the ionic diffusion paths is of major importance to achieve improved electrochemical performance.

Among the large variety of electrode materials exhibiting high energy and high power densities, Nb$_2$O$_5$ has been identified as a promising candidate for Li ion batteries. Several polymorphic forms of Nb$_2$O$_5$ are described in the literature, such as TT-Nb$_2$O$_5$ (pseudohexagonal), T-Nb$_2$O$_5$ (orthorhombic), M-Nb$_2$O$_5$ (tetragonal) or H-Nb$_2$O$_5$ (monoclinic) [19,20]. Low temperature forms (TT-Nb$_2$O$_5$ and T-Nb$_2$O$_5$) have been deeply investigated[21-26] by B. Dunn et al., owing to the fast lithium ions intercalation process occurring in the bulk material. Particle size (nanoscale), porosity and electrode formulation are finely tuned to produce high mass loading electrodes where the charge storage process is not limited by ion diffusion, thus leading to the concept of Li ion pseudo intercalation reaction [25]. Electron transport is significantly improved in these materials by the addition of a highly conductive agent/scaffold in the composite electrode such as graphene, carbide derived carbon or carbon black [23-26] to tackle the low electronic conductivity of the Nb$_2$O$_5$ material (3 × 10$^{-6}$ S cm$^{-1}$ at 300 K). However, the cost as well as the limited available Nb resource
currently limit the development of Nb based negative electrodes for large scale Li ion battery applications. However, this does not apply to micro devices thanks to the small amount of materials used. There is then interesting opportunities for designing thin films of NbO thin films for micro devices applications. Thin film electrode for MB [27,28] or MSC [5,11] applications can be prepared by using magnetron sputtering technique or, alternatively, by Atomic Layer Deposition (ALD) which has also been found as a suitable tool for commercial CMOS facilities, to grow thin films on large scale substrate with high uniformity and homogeneity [29-35].

In this paper, ALD technique has been used to grow highly adhesive 30 to 90 nm thick NbO thin films onto Pt current collectors deposited on Si wafer, and further characterized as negative electrode for Li ion micro battery applications. The first part of the study focuses onto the synthesis process and the structural characterizations of T-NbO thin films. Then, electrochemical characterizations of NbO thin films have been achieved, showing the typical signature of Li ion intercalation reaction with redox activity present in the 1.1 V vs Ref potential range. Interestingly, although dense and conducting additive free NbO thin films were prepared, these films could deliver up to 8 µAh cm⁻² at 10 mV s⁻¹. This paper aims at demonstrating the suitable growth of NbO thin films by ALD acting as an attractive negative electrode for micro devices applications.

2. Experimental section

2.1. Film preparation

Prior to NbO deposition, 3 inch silicon wafer is coated with Al₂O₃ (100 nm) and Pt (50 nm) layers to be used as a current collector, using a Beneq TFS 200 ALD reactor. Al₂O₃ layer is used to prevent the interdiffusion between Pt and Si when the stacked layers are annealed [27]. NbO thin films are grown in a Picosun R200 ALD reactor under an Ar gas pressure around 0.5 mbar. Argon is used as the carrier and purging gas. Niobium(V) ethoxide Nb(OEt)₅ and deuterated water are used respectively as niobium precursor and oxygen reactant. Nb(OEt)₅ precursor was purchased from Strem Chemicals (claimed purity 98%). The sublimation temperature is 185 °C for the niobium source while the water source is kept at room temperature. The reactor temperature is tuned from 220 up to 330 °C. A total of 1,000 deposition cycles were achieved to study the evolution of the NbO growth per cycle rate (GFC) as a function of the deposition temperature. Nb(OEt)₅ and water are pulsed into the chamber alternatively with different pulse time duration separated by 6 s argon purge; the whole process accounts for one deposition cycle. The number of cycles is progressively increased to reach the targeted thickness. The as deposited NbO thin films are amorphous and noted as a NbO layer. The transformation from a NbO layer to crystallized, orthorhombic T-NbO polymorph was achieved by thermal annealing at 750 °C during 2 h under air atmosphere of the films. The resulting stacked layers are noted as Si / Al₂O₃ / Pt / NbO.

2.2. Sample morphological and structural characterization

Thickness of a NbO thin films was determined by X-ray reflectivity (XRR) fits on silicon substrate. The film morphology of Al₂O₃/Pt/ NbO stacked layers was assessed by SEM (Zeiss Ultra 55 Scanning Electron Microscope). Crystallographic orientation and phase identifi cation were determined by specular X ray diffraction w 2θ scans (XRD, Rigaku SMARTLAB multi purpose six axis diffractometer 9 kW rotating anode) using CuKα radiation (λ = 1.5418 Å). The
oxidation state of the niobium element was measured by X Ray Photoelectron Spectroscopy using a Physical Electronics type 5600 equipment.

2.3. Electrochemical analyses

Electrochemical measurements were conducted in home made flat cells operated in an Ar filled glove box. Cells are assembled using the Al₂O₃/Pt/Nb₂O₅ stacked layers as working electrode while pure Li served as counter and reference electrode. A mixture of 1 M LiClO₄ dissolved in Ethyl Carbonate (EC)/Dimethyl Carbonate (DMC) (1:1) was used as electrolyte. Galvanostatic cycling and cyclic voltammetry were performed with a Biologic VMP3 potentiostat/galvanostat.

3. Results and discussion

The preparation of T Nb₂O₅ films is shown in Fig. 1. A schematic describing the stacked layers is depicted in Fig. 1A. A Nb₂O₅ thin films were deposited from ALD onto 50 nm thick Pt current collectors. A layer of Al₂O₅ (100 nm) was used as a barrier diffusion layer at the Pt/Si wafer interface. The transformation from a Nb₂O₅ to crystallized orthorhombic T Nb₂O₅ polymorph was achieved by thermal annealing at 750 °C during 2h under air atmosphere. During the annealing process, the presence of the Al₂O₅ thin film avoids interdiffusion between Si and Pt so that PtSi alloy cannot form [27]. The crystal structure of the T Nb₂O₅ is described in Fig. 1A. Each Niobium atoms is localized at the center of edge or corner sharing distorted polyhedra clustering 6 or 7 oxygen ions in the ab plane giving rise to the formation of tilted octahedral (NbO₆) or tilted pentagonal bipyramidal (NbO₅) respectively. These polyheda are connected by corner sharing along the c axis. While the lithium intercalation process in T Nb₂O₅ is known since the 1980s, recent in situ/operando experimental studies [24,25,36] and theoretical modelling lead on the T Nb₂O₅ have been carried out to study the charge storage process due to the complexity of the orthorhombic structure. On the one hand, experimental studies have confirmed that lithium ion insertion in the crystal structure is achieved via a solid solution mechanism (with no phase transition), together with a contraction/expansion of the c axis lattice parameter upon cycling. On the other hand, several computational studies clearly show that the (001) planes exhibit low energy barrier for Li ion transport inside the orthorhombic structure [37,38]. The synthesis process of T Nb₂O₅ thin films is schematically described in Fig. 1B. The growth conditions of the thin films by ALD are optimized to produce amorphous Nb₂O₅ layer on silicon coated Al₂O₃/Pt substrate. Post annealing at 750 °C in air atmosphere is then performed after the deposition to form T Nb₂O₅. Nb(OEt)₅ precursor being liquid at room temperature, the temperature should be close to 190 °C to promote the liquid gas phase transformation. The self saturating nature of the surface reactions occurring during each half cycles can be considered as the main characteristic of an ALD process. Saturation curves were investigated as a function of the exposure dose of precursors. The growth per cycle (GPC) of Nb₂O₅ is shown vs the deposition tempera
ture (Fig. 1C), the time duration of the Nb precursor (Fig. 1D) and H₂O reactant (Fig. 1E). A constant a Nb₂O₅ growth rate of 0.05 ± 0.005 nm/cycle is measured for deposition temperature between 250 to 330 °C, which defines stabilized ALD deposition process. The high GPC value of 0.07 nm per cycle achieved at temperature (230 °C) is due to physisorption phenomena of the active species instead of the self saturating chemisorption of exposed surface [39]. The deposition temperature has thus been fixed to 250 °C.

The GPC is investigated as function of the Nb(OEt)₅ duration and the water pulse duration respectively. A stabilization of the a Nb₂O₅ growth rate around 0.05 nm per cycle is observed as soon as the pulse time is higher than 1.5 and 2.5 s for the Nb(OEt)₅ precursor (Fig. 1D) and H₂O reactant (Fig. 1E), respectively. Such a saturation in the deposition rate clearly confirms the self limiting film growth of the a Nb₂O₅. The measured GPC is in agreement with the value reported by other research groups [40,41].

The as deposited Nb₂O₅ layers are amorphous whatever the selected deposition parameters. Consequently, the films have to be annealed in order to crystallize in the orthorhombic structure.

Fig. 2A shows a SEM cross section of the Al₂O₃/Pt/Nb₂O₅ stacked layers. The electrode structure has a dense morphology before and after the annealing process at 750 °C during 2h under air atmosphere. After annealing, the Nb₂O₅ layer shows the formation of large grains while a smooth surface is observed before the annealing for the a Nb₂O₅.
X Ray Diffraction analysis of the samples is reported as a function of the deposition temperature in Fig. 2B. All samples show the (111) diffraction peak of the Pt current collector observed at 2θ = 40° (PDF card 04-0802), whatever the deposition temperature. The (181) and (201) Bragg peaks identified on the 4 samples are consistent with the T-Nb₂O₅ orthorhombic structure (PDF card 30-0873). At 300 °C, a small contribution of the (001) diffraction peak is observed at 2θ = 22° on the XRD pattern. This analysis confirms the preferential orientation of the films.

XPS core level analysis in the region of 0-700 eV were carried out on these 4 samples. No etching is done on these samples before the XPS analysis. The survey scan and a focus on the O 1s core level are reported in Fig. S1IA while the Nb 3d level spectra is shown in Fig. 2C. Only the doublet of the Nb 3d core level is detected at 207.5 eV and 210.5 eV, assigned to the Nb 3d₅/₂ and Nb 3d₃/₂ levels, respectively. These values are consistent with the presence of Nb⁵⁺ [42,43] for all samples. Two main contributions at 530.6 eV and 532 eV are observed on the O 1s spectra (Fig. S1IB) which fits with binding energies reported [44,45] for Nb₂O₅.

To clearly demonstrate the superior electrochemical behavior of T-Nb₂O₅ as compared to the amorphous a-Nb₂O₅, electrochemical analysis is reported in Fig. 3A and B. From the cyclic voltammograms (CV) at 0.5 mV s⁻¹ shown in Fig. 3A, we observed on the one hand no clear redox peak of the a-Nb₂O₅ and a huge irreversible capacity when cycled between 1 and 0 V vs Li/Li⁺. Redox peaks are highlighted around 1.8 V vs Li/Li⁺ on the CV of the T-Nb₂O₅. On the other hand, the T-Nb₂O₅ thin film delivers a higher areal capacity than a-Nb₂O₅ when the sweep rate is increased from 0.5 up to 10 mV s⁻¹ (Fig. 3B). Such conclusions are classically observed by other research groups [22,46]. The electrochemical characterization of the 50 nm thick Nb₂O₅ film (1000 ALD cycles) prepared at 250 °C is shown in Fig. 3C and D at various sweep rates. Cyclic voltammograms for sweep rates from 0.1 to 5 mV s⁻¹ are similar to CVs of T-Nb₂O₅ synthesized or deposited by other deposition methods [20,22,24]. Broad cathodic peaks corresponding to lithium intercalation are observed around 1.8 V vs Li/Li⁺ while the corresponding anodic peak can be seen at 1.75 V vs Li/Li⁺ [20,22,24]. No redox activity is observed beyond 2.2 V vs Li/Li⁺. The slight shift of the anodic peaks as well as the merging of the two cathodic peaks when increasing potential scan rate shows a dependence of the electrochemical kinetics with the scan rate.

Fig. 3B shows the plot of the peak current versus the scan rate in logarithmic scale. Peak current from CV experiments follows a power law as shown in Eq. 1:

$$I_{\text{peak}} = \nu^b$$

where “I_{peak}” represents the peak current (mA) and “ν” is the scan rate (mV s⁻¹). A b value of 1 is calculated for the cathodic peaks, which evidences a non-diffusive charge storage mechanism, in the T-Nb₂O₅ material within the potential scan rates range studied. The average b value decreases to 0.83 when considering the anodic current, showing the emergence of a diffusion limited process or ohmic limitation. Although the dense structure of the film as well as the absence of any conducting additive limit their power performance, those results confirms the pseudocapacitive behavior of these T-Nb₂O₅ thin films prepared from ALD technique.

One important parameter for micro devices is the areal (surface) capacity (mAh per cm²), which depends on the film thickness deposited onto the substrate. The growth deposition rate of Nb₂O₅ film from ALD has been studied by tuning the number of ALD cycles. The change of the film thickness (a Nb₂O₅) as a function of the number of ALD cycles is shown in Fig. 4A. The linear change of the film thickness from 30 to 75 nm validates the deposition temperature and the pulse sequence previously selected (Fig. 1). After an annealing at 750 °C of the prepared Nb₂O₅ films, the formation of T-Nb₂O₅ is confirmed from the presence of the two diffraction peaks ([181] and [201]) on the XRD patterns of the 4 samples. The intensity of these two peaks increases.

![Fig. 3. A. Electrochemical analysis of the Nb₂O₅ sample (1250 ALD cycles) deposited at 250 °C: cyclic voltammograms of the as-deposited Nb₂O₅ (a-Nb₂O₅) and annealed Nb₂O₅ at 750 °C (T-Nb₂O₅) samples measured at 0.5 mV s⁻¹. B. Evolution of the surface capacity (in μA cm⁻²) as a function of the sweep rate demonstrating the superior electrochemical behavior of the T-Nb₂O₅ (1250 ALD cycles). C. Cyclic voltammograms (CV) of the T-Nb₂O₅ thin film deposited at 250 °C (1000 ALD cycles) and tested in 1 M LiClO₄ EC/DMC (1/1) organic electrolyte as a function of the sweep rate from 0.3 to 5 mV s⁻¹. D. b-value determination issued from the anodic and cathodic peak current vs sweep rate. From the CV, b-value is close to 1 and 0.83.](image-url)
cesses. Such surface analysis clearly confirms the dense behavior of the cycles sample is shown in Fig. 4C. The T Nl½Os thin film stays T Nl>iOs observed in the cross sections imaging reported in Fig. 2A.

Large) with no void are observed at the surface of the thin film.

The film morphology is studied by Scanning Electron Microscope imaging. Top view analysis performed in the 1400 ALD cycles sample is shown in Fig. 4C. The T Nl2O3 thin film stays continuous after the annealing process, exhibits a compact morphology and is composed of large grains (grain size ~ 250 nm) with no voids between the grains thus validating the dense and compact behavior of the T Nl2O3 prepared by ALD and post deposition annealing processes. Such surface analysis clearly confirms the dense behavior of the T Nl2O3 observed in the cross sections imaging reported in Fig. 2A.

Atomic Layer Deposition technique is a suitable deposition method able to deposit pinhole free layer for advanced 3D dielectric capacitor [48,49] and 3D Li ion micro batteries. For 3D Metal/Insulator/Metal devices, the insulator should be free of defects while the thickness is limited to several tens of nanometers. Such technique has already been demonstrated recently as an efficient tool for the deposition of solid electrolyte for 3D Li ion micro battery [50 52]. As an example, 10 nm thick Li3PO4 is shown to act as a pinhole free layer. Consequently, thin films deposited by ALD are very dense owing to the growth mechanism of thin films by such deposition method.

Fig. 5A shows the CVs of the T Nl2O3 samples prepared with various thicknesses, at the same potential scan rate (10 mV s⁻¹). The current increase with increasing film thickness evidences the improve ment of the areal capacity of the sample. Fig. 5B shows the change of the areal capacity (mAh·cm⁻²) with the T Nl2O3 film thickness. At 10 mV s⁻¹, the linear change of the areal capacity with the film thickness indicates that there is no major limitation in the electrochemical activity along the depth of the film, although dense and conducting additive free T Nl2O3 films were prepared. Films capacity up to 5 µAh cm⁻² could be achieved, which positively compares with other works. Nl2O3 were successfully used in a pseudocapacitor [22] and a Li ion micro battery [53]. In ref [53], amorphous Nl2O3 thin film is used as an negative electrode in Li ion micro battery in planar design. 630 nm thick electrode delivers an areal capacity close to 45 µAh cm⁻², resulting in 71.4 µAh cm⁻²·µm⁻¹. In this paper, 50 nm thick ALD layer delivers 5 µAh cm⁻²/100 µAh cm⁻²·µm⁻¹ at 10 mV s⁻¹: this capacity is slightly

![Fig. 4](image)

Fig. 4. A. Evolution of the a-Nb2O5 thickness as a function of the number of ALD cycles. B. Diffractograms of the thin films vs the number of cycles. The (181) and (201) diffraction peaks of the T-Nb2O5 are visible. C. Top view analysis of the 1400 ALD cycles based sample (SEM analysis) demonstrating the high compactness of the T-Nb2O5: large grains (~ 250 nm large) with no void are observed at the surface of the thin film.

![Fig. 5](image)

Fig. 5. Electrochemical studies of T-Nb2O5 thin films deposited by ALD as a function of the film thickness and the sweep rate. A. Evolution of the dQ/dE (mF cm⁻²) at 10 mV s⁻¹ regarding the number of ALD cycles. B. Plot of the surface capacity vs the film thickness at 10, 25 and 100 mV s⁻¹. C. Normalized capacity vs the number of ALD cycles.
higher than the one published by Baba et al. [53]. B. Dunn et al. have published in 2012 a study [22] dealing with pseudocapacitive behavior of mesoporous Nb2O5, depending on the type of polymorph. A 70 m2 g⁻¹ T Nb2O5 sample could achieve 500 F g⁻¹ at low sweep rate, within 1.8 V. The areal capacity of such mesoporous T Nb2O5 is then close to 0.35 μAh cm⁻². We have no information about the film thickness which make not possible to calculate the normalized capacity. Such value is lower than the areal capacity reached by the T Nb2O5 synthesized by ALD. Moreover, despite interesting properties for large scale super capacitors, the mesoporous T Nb2O5 developed by Dunn et al. is not synthesized by ALD while this deposition technique is an attractive solution for micro supercapacitors applications and more largely for miniaturized energy storage devices due to the high adhesion properties of the ALD layers and the outstanding conformal shape of the deposited thin films.

When increasing the potential scan rate, the mean slope decreases which is assumed to be linked with ohmic and diffusion limitations. Fig. 5C shows the volumetric capacitance (areal capacitance divided by the film thickness). At 10 mV s⁻¹, the volumetric capacitance reaches a maximum value then slightly decreases for longer deposition times (or higher thickness). This shows that a film thickness around 50 nm allows for efficient electrochemical performance; also, there is only small performance decrease for film thicknesses up to 80 nm. Same trend is observed for higher scan rates; however, the smaller capacity measured at 25 and 100 mV s⁻¹ supports the existence of kinetic limitations (ohmic and/or diffusion). These results show that ALD process is efficient to prepare Nb2O5 electrodes exhibiting decent areal and volumetric electrode capacity.

Galvanostatic charge/discharge experiments of the 50 nm thick T Nb2O5 sample at various current densities are shown in Fig. 6A. As expected, the voltage profile is characteristic of Li ion intercalation process, with a means discharge potential of 1.5 V vs Li/Li⁺. The high coulombic efficiency (> 99% for the 50 nm thick sample) even at low current density (Fig. 6A) highlights the absence of leakage current due to parasitic redox reaction coming from impurities, which is also a key advantage of the ALD technique. The change of the areal electrode capacity versus the C rate have been calculated from the galvanostatic charge/discharge plots for all the samples, and are plotted in Fig. 6B. The 600 ALD cycles sample (30 nm thick film) exhibits a constant surface capacity of about 1.5 μAh cm⁻² within the whole C rate range, that is from 1 C (1 h charging time) to 30 C (2 min charging time). The small thickness of this sample prevents the charge storage process to be diffusion limited within the dense T Nb2O5 layer. For thicker samples (1000 ALD cycles = 50 nm thick and 1800 ALD cycles = 90 nm thick), the surface capacity is increased from 5 μAh cm⁻² (50 nm thick) up to 8 μAh cm⁻² (90 nm thick sample) at 1 C rate. 40% of capacity loss is measured from 1 C to 30 C for the 50 nm thick T Nb2O5 sample, and 43% capacity for 90 nm thick T Nb2O5 sample. The capacity decrease for thicker films is assumed to originate from ohmic and Li⁺ diffusion limitations in the bulk of the T Nb2O5 films, in agreement with the preparation of dense, conducting additive free Nb2O5 films. However, a 40% capacity loss at 30 C rate still makes these thin films interesting for micro devices applications. To confirm the dense behavior of the T Nb2O5, a comparison is done between the theoretical gravimetric capacity of Nb2O5 with the experimental one. The theoretical gravimetric capacity Q_{\text{grav}} is 205 mAh g⁻¹ taking into account two lithium ions intercalated in the Nb2O5 framework. We measure at the lower sweep rate (0.4 mV s⁻¹) a surface capacity Q_{\text{surf-exp}} close to 5 μAh cm⁻² with 50 nm thick T Nb2O5 leading to Q_{\text{norm-exp}} = 100 μAh cm⁻² μm⁻¹ and a volumetric capacity Q_{\text{vol-exp}} ~ 1000 mAh cm⁻³. The theoretical bulk density of the Nb2O5 is 4.6 g cm⁻³. Consequently, if dense layer is taking into account, the experimental bulk density approximates the theoretical density: Q_{\text{exp}} = 1000/4.6 = 217 mAh g⁻¹. This value is close to the theoretical value. Lower bulk density (i.e. use of porous thin film) will lead to eccentric gravimetric capacity (~ 217 mAh g⁻¹) taking into account the measured surface capacity and the film thickness. Such calculation clearly confirms the dense behavior of the Nb2O5 layers.

Fig. 6C shows the change of the capacity with the cycle number for the three samples with 30 nm, 50 nm and 90 nm thick T Nb2O5 films. Samples exhibit a good cycling behavior up to 20 C and 30 C during the first 35 cycles, thus validating the attractive performance of T Nb2O5 thin films prepared from ALD technique for electrochemical energy storage micro device applications.

ALD being a powerful tool to achieve conformal deposition of thin films from several nanometers to 100 nm on complex micro or nanoarchitected substrate exhibiting high specific area, future works will be devoted to the deposition of T Nb2O5 on complex nanoarchitectured scaffold to improve the areal footprint electrode capacity.

4. Conclusion

This paper reports about the synthesis and electrochemical analysis of T Nb2O5 electrode deposited by ALD on Al2O3/Pt coated silicon wafer. Tens of nanometer thick dense a Nb2O5 thin films were grown by ALD, transformed into T Nb2O5 polymorph by further annealing at 750 °C. T Nb2O5 film thickness and the resulting electrode areal capacity could be successfully controlled by playing with the number of ALD cycles. The electrochemical analysis reveals a lithium ion intercalation redox mechanism in the T Nb2O5 electrode. An electrode areal capacity of 8 μAh cm⁻² could be achieved at 1 C rate, with only 40% capacity loss at 30 C (2 minutes discharging time). These results shows that Atomic Layer Deposition technique can be used for the fabrication of Nb2O5 based on chip micro devices for Internet of Things (IoT) and wireless sensor network applications.

Acknowledgments

This research is financially supported by the ANR (Agence Nationale pour la Recherche) within the MINOTORES (MICro supercondensateur à porOsié contrôlée pour des applications à
foRte densité d’enErgie sur Substrat rigide et flexible) project (ANR 16 CE24 0012 01). The authors also want to thank the French network on electrochemical energy storage (RSE2, ANR Labex STORE EX) for the financial support. The French RENATECH network is greatly acknowledged for the use of microfabrication facilities. Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Hauts de France and FEDER are acknowledged for supporting and funding XRD facilities.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jes.2018.08.022.

References

