REPETABILITE ET REPRODUCTIBILITE DE LA MESURE DE LA PRESSION INTRAOCULAIRE AVEC LE TONOPEN XL® CHEZ LE CHIEN

THESE
pour obtenir le grade de
DOCTEUR VETERINAIRE

DIPLOME D'ETAT
présentée et soutenue publiquement en 2008
devant l'Université Paul-Sabatier de Toulouse

par

Thomas VERBOIS
Né, le 29 janvier 1983 à SOYAUX (Charente)

Directeur de thèse : M. le Professeur Alain REGNIER

JURY

PRESIDENT :
M. François MALECAZE
Professeur à l'Université Paul-Sabatier de TOULOUSE

ASSESSEURS :
M. Alain REGNIER
Professeur à l'Ecole Nationale Vétérinaire de TOULOUSE
M. Hervé LEFEBVRE
Professeur à l'Ecole Nationale Vétérinaire de TOULOUSE
MINISTERE DE L’AGRICULTURE ET DE LA PECHE
ECOLE NATIONALE VETERINAIRE DE TOULOUSE

Directeur : M. A. MILON
Directeurs honoraires
M. G. VAN HAVERBEKE
M. P. DESNOYERS
Professeurs honoraires
M. L. FALIU
M. C. LABIE
M. C. PAVAUX
M. F. LESCURE
M. A. RICO
M. A. CAZIEUX
Mme V. BURGAT
M. J. CHANTAL
M. J.-F. GUELFI
M. M. ECKHOUTTE
M. D. GRIESS

PROFESSEURS CLASSE EXCEPTIONNELLE
M. BRAUN Jean-Pierre, Physique et Chimie biologiques et médicales
M. DORCHIES Philippe, Parasitologie et Maladies Parasitaires
M. EUZEBY Jean, Pathologie générale, Microbiologie, Immunologie
M. TOUTAIN Pierre-Louis, Physiologie et Thérapeutique

PROFESSEURS 1ère CLASSE
M. AUTEFAGE André, Pathologie chirurgicale
M. BODIN ROZAT DE MANDRES NEGRE Guy, Pathologie générale, Microbiologie, Immunologie
M. CORPET Denis, Science de l’Aliment et Technologies dans les industries agro-alimentaires
M. DELVERDIER Maxence, Anatomie pathologique
M. ENJALBERT Francis, Alimentation
M. FRANC Michel, Parasitologie et Maladies Parasitaires
M. MARTINEAU Guy-Pierre, Pathologie médicale du Bétail et des Animaux de basse-cour
M. PETIT Claude, Pharmacoculture et Toxicologie
M. REGNIER Alain, Physiopathologie oculaire
M. SAUTET Jean, Anatomie
M. SCHELCHER François, Pathologie médicale du Bétail et des Animaux de basse-cour

PROFESSEURS 2è CLASSE
Mme BENARD Geneviève, Hygiène et Industrie des Viandes Alimentaires d’Origine Animale
M. BERTHELOT Xavier, Pathologie de la Reproduction
M. CONCORDET Didier, Mathématiques, Statistiques, Modélisation
M. DUCOS Alain, Zootechnie
M. DUCOS de LATHITE Jacques, Parasitologie et Maladies parasitaires
Mme GAYARD-TROY Véronique, Physiologie de la Reproduction, Endocrinologie
M. GUERRE Philippe, Pharmacie et Toxicologie
Mme HAGEN-PICARD Nicole, Pathologie de la Reproduction
Mme KOLF-CLAUW Martine, Pharmacoculture - Toxicologie
M. LEFEBVRE Hervé, Physiologie et Thérapeutique
M. LIGNEREUX Yves, Anatomie
M. PICAVET Dominique, Pathologie infectieuse
M. SANS Pierre, Productions animales
Mlle. TRUMEL Catherine, Pathologie médicale des équidés et des carnivores domestiques

INGENIEUR DE RECHERCHE
M. TAMZALI Youssef, Responsable Clinique équine

PROFESSEURS CERTIFIES DE L’ENSEIGNEMENT AGRICOLE
Mme MICHAUD Françoise, Professeur d’Anglais
M. SEVERAC Benoît, Professeur d’Anglais

MAÎTRE DE CONFERENCES HORS CLASSE
M. JOUGLAR Jean-Yves, Pathologie médicale du Bétail et des Animaux de basse-cour
MAITRES DE CONFERENCES CLASSE NORMALE

M. ASIMUS Erik, Pathologie chirurgicale
M. BAILLY Jean-Denis, Hygiène et Industrie des Denrées Alimentaires d'Origine Animale
Mme BENNIS-BRIT, Lydie, Physique et Chimie biologiques et médicales
M. BERGONIER Dominique, Pathologie de la Reproduction
M. BERTAGNOLI Stéphane, Pathologie infectieuse
Mme BOUCLAIRVILLE - CAMUS, Christelle, Biologie cellulaire et moléculaire
Mlle BOULLIER Séverine, Immunologie générale et médicale
Mme BOURGES-ABELLA Nathalie, Histologie, Anatomie pathologique
M. BOUSQUET-MELOU Alain, Physiologie et Thérapeutique
M. BRUGÈRE Hubert, Hygiène et Industrie des Denrées Alimentaires d'Origine Animale
Mlle CADIERGUES Marie-Christine, Dermatologie
Mme D'QUELLOU Armeille, Pathologie médicale des Equidés et des Carnivores
M. DOSSIN Olivier, (DISPONIBILITE) Pathologie médicale des Equidés et des Carnivores
M. FOURCAS Gilles, Pathologie du bétail
M. GUERIN Jean-Luc, Elevage et Santé Avicoles et Clinicoles
M. JACQUET Philippe, Parasitologie et Maladies Parasitaires
M. JAEGER Jean-Philippe, Pharmacie et Toxicologie
Mlle LACROIX Caroline, Anatomie Pathologique, Histologie
Mme LETRON - RAYMOND, Isabelle, Anatomie pathologique
M. LAYZDH Faouzi, Statistiques biologiques et Mathématiques
M. MATHON Didier, Pathologie chirurgicale
M. MEYER Gilles, Pathologie des ruminants
Mme MEYNAUD-COLLARD Patricia, Pathologie chirurgicale
M. MOGICATO Giovanni, Anatomie, Imagerie médicale
M. MONNEREAU Laurent, Anatomie, Embryologie
Mme PRIYENKO Nathalie, Alimentation
Mme TROGEGLER - MEYNAUDIER, Annabelle, Alimentation
M. VERWAERDE Patrick, Anesthésie, Réanimation

MAÎTRES DE CONFERENCES CONTRACTUELS

M. CASSARD Hervé, Pathologie du bétail
Mme GOSSOT Pauline, Pathologie Chirurgicale
M. NOUVEL Laurent-Xavier, Pathologie de la reproduction
Mme RATTÉ Elise, Médecine
M. REYNOLDS Brice, Pathologie médicale des Equidés et Carnivores
M. VOLMER Romain, Infectiologie

ASSISTANTS D'ENSEIGNEMENT ET DE RECHERCHE CONTRACTUELS

Mme BIBBAL Delphine, H.I.D.A.O.A Sciences de l'Alimentation
M. CONCHOU Fabrice, Imagerie médicale
M. CORBIERE Fabien, Pathologie des ruminants
Mlle PALIENNE Sophie, Chirurgie des animaux de compagnie
M. RABAISSE-Delcier, Productions animales
M. TREVENNEC Karen, Épidémiologie, gestion de la santé des élevages avicoles et porcins
A Monsieur le Professeur François MALECAZE

Professeur des Universités
Praticien hospitalier
Ophtalmologie

Qui nous fait l’honneur de présider notre jury de thèse.
Hommages respectueux.

A Monsieur le Professeur Alain REGNIER

Professeur de l'Ecole Nationale Vétérinaire de Toulouse
Physiopathologie oculaire

Qui nous a guidé tout au long de ce travail.
Pour sa disponibilité, sa gentillesse et sa patience,
En témoignage de notre profond respect et de notre sincère reconnaissance.

A Monsieur le Professeur Hervé LEFEBVRE

Professeur de l'Ecole Nationale Vétérinaire de Toulouse
Physiologie et Thérapeutique

Qui nous a fait l’honneur de participer à notre jury de thèse.
Pour sa participation dynamique à notre étude.
Très sincères remerciements.
Merci

A ma chère petite Maman, qui a eu le talent et la patience de faire de moi ce que je suis. Tu as toujours cru en moi. Je ne saurai jamais comment te remercier de tout ce que tu as pu me donner.

A Marc, qui s’est occupé de nous et qui prend si bien soin de ma petite maman. Mille mercis. Que la retraite te permette de visiter du pays à bord de ton bolide.

A toute la famille, à la nouvelle génération qui grandit et à tous ceux qui me sont proches. Que la vie continue de nous réunir et qu’elle vous apporte à tous plein de bonheur.

A ma petite puce chérie,

Il s’agit pour moi de monter aujourd’hui une nouvelle marche dans ma vie, tu m’as aidé, tu m’as soutenu. J’espère faire de même pour les prochaines marches qui nous attendent ensemble.

Pour ton amour, ta tendresse, ta joie de vivre, ta bonne humeur, ta frénésie dans le travail (et ta décompression après le travail!), pour tout cela et encore plus, je suis heureux de partager ta vie.

Delmine, je t’aime

(et Œdipe aussi !)
A mes chers collocs de Miramar, pour tout ce qu’on a pu partager pendant ces trois ans de vie commune.
Je tenais à faire passer à chacun de vous un petit message personnel :

<table>
<thead>
<tr>
<th>Si tu étais :</th>
<th>Un pays</th>
<th>Un sport</th>
<th>Une expression</th>
<th>Une spécialité</th>
<th>Un alcool</th>
<th>Un prénom</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GG</strong></td>
<td>Le Maroc : parce que t’es tellement beau dans ta djellaba</td>
<td>Le sport à la télé, y a que ça de vrai !</td>
<td>Tu prends l’Apéro ?!?</td>
<td>La cuisine... et surtout les années 80 !!!</td>
<td>Martini le soir soigne les déboires</td>
<td><strong>Olivier</strong></td>
</tr>
<tr>
<td><strong>Flunchy</strong></td>
<td>La lune : mais faut pas oublier de redescendre !!! Et le Gers bien sûr !</td>
<td>La sieste : et quelle assiduité !</td>
<td>Faut toujours remettre à demain ce qu’on n’a pas envie de faire aujourd’hui. Raahha !</td>
<td>La Playstation, et la cuisine (mais faut laisser reposer 10 à 15j !)</td>
<td>Un Punch (pas moins de 12 litres)</td>
<td><strong>Sébastien</strong></td>
</tr>
<tr>
<td><strong>BiBi</strong></td>
<td>Le Gers : parce qu’on y mange tellement bien</td>
<td>Le mawashiguéri coups de pied circulaire</td>
<td>Le confit c’est pas gras !</td>
<td>Les langues… Erasmus !</td>
<td>Floc pour l’apéro et Armagnac pour le dijo</td>
<td><strong>Xavier</strong></td>
</tr>
<tr>
<td><strong>LoLo</strong></td>
<td>Le Poitou-Charentes : parce qu’y a pas de plus beau pays !</td>
<td>Le rugby</td>
<td>Si tu vois c’que j’veux dire !</td>
<td>Le p’tit traquenard !</td>
<td>B52, Ti-Punch (pas plus de 2 cl)</td>
<td><strong>Laurent</strong></td>
</tr>
</tbody>
</table>
A Romain, Charlotte, la Joe Bar, St Simon et les filles de la Marsouffle, j’espère que vous aurez pris autant de plaisir que moi à partager ces quelques années.

A tous mes compagnons de voyage, que ce soit lors de notre escapade vietnamienne, de nos week-ends pyrénéens (parfois périlleux !), de notre aventure barcelonaise ou de nos rendez-vous asiatiques du dimanche soir.

A toute la promo Laborde, du moins à ceux que j’ai pu connaître et qui ont participé à lui donner vie.

A défaut de me répéter, je ne pourrais bien sûr pas oublier de remercier le « Maître » Alain Régnier et le « Chef » Thomas Dulaurent avec qui j’ai eu le plaisir et l’honneur de passer une année formidable, et studieuse ! Merci de m’avoir fait profiter de votre savoir, toujours dans la bonne humeur ! Une petite photo pour la route ?

Merci aussi à mes deux acolytes, Sabrina et Alexis. L’un pour son accent ariégeois et son sourire toujours de rigueur, et l’autre… et bien tout simplement pour avoir été Alexis : on aura fait un bout de chemin ensemble depuis Berthelot !

A tous ceux qui ont collaboré à ce travail, je n’oublie pas Didier Concordet pour son aide précieuse durant l’analyse statistique et Jean-Yves pour son coup de main lors des mesures.

Merci à Dioptrix, fournisseur de matériel en ophtalmologie vétérinaire, pour son soutien financier apporté à la réalisation de ce travail.
TABLE DES MATIERES

INTRODUCTION 19

1ère PARTIE :
LA PRESSION INTRAOCULAIRE : DONNEES
BIBLIGRAPHIQUES

1. L’HUMEUR AQUEUSE 21

1.1. MECANISMES DE FORMATION 21
  1.1.1. NOTION DE BARRIERES HEMATO-OCULAIRES 21
  1.1.2. SITE ANATOMIQUE DE FORMATION 22
  1.1.3. MECANISMES DE FORMATION 22
    1.1.3.1. Ultrafiltration 22
    1.1.3.2. Sécrétion active 23
  1.1.4. HUMEUR AQUEUSE SECONDE 24

1.2. ELIMINATION DE L’HUMEUR AQUEUSE 25
  1.2.1. DRAINAGE PAR L’ANGLE IRIDO-CORNEEN 25
  1.2.2. DIFFUSION PAR LA VOIE UVEO-SCLERALE 26

1.3. DYNAMIQUES DE L’HUMEUR AQUEUSE 27

2. LA PRESSION INTRAOCULAIRE (PIO) 28

  2.1. DEFINITION 28

  2.2. METHODES DE MESURE 28
2.2.1. MANOMETRIE  
2.2.2. TONOMETRIE 

2.3. BIAIS POSSIBLES LORS DE LA MESURE AU TONOPEN  
2.3.1. ERREURS LIEES A L’OPERATEUR  
2.3.2. ERREURS LIEES A L’ETAT DE L’OEIL EXAMINE  
2.3.3. MESURES REPETEES 

2.4. CONTRE-INDICATIONS A LA MESURE DE LA PIO 

3. LES SOURCES DE VARIATIONS DE LA PIO  

3.1. VARIATIONS PHYSIOLOGIQUES  
3.1.1. FACTEURS DE VARIATIONS  
3.1.1.1. Variations nyctémérales 
3.1.1.2. Variations avec l’âge 
3.1.1.3. Autres facteurs physiologiques influençant la PIO  
3.1.2. REGULATION DE LA PIO PAR L’ORGANISME  
3.1.2.1. Régulation nerveuse 
3.1.2.2. Régulation neuro-humorale et hormonale 

3.2. VALEURS USUELLES  
3.2.1. NORMES PHYSIOLOGIQUES CHEZ LES DIFFERENTES ESPECES  
3.2.2. VALEURS DIAGNOSTIQUES D’UNE MODIFICATION DE LA PIO
# 2ème PARTIE :

**ETUDE EXPERIMENTALE DE LA MESURE DE LA PRESSION INTRAOCULAIRE CHEZ LE CHIEN AVEC LE TONOPEN**

## 1. PROPRIETES METROLOGIQUES DE LA MESURE DE PRESSION INTRAOCULAIRE (PIO)

- 1.1. NOTION DE REPETABILITE ET DE REPRODUCTIBILITE 39
- 1.2. ETUDES METROLOGIQUES EN TONOMETRIE 39
- 1.3. NOTION D'EFFECT OPERATEUR 41

## 2. MATERIEL ET METHODE

- 2.1. ANIMAUX 43
- 2.2. TONOPEN XL 44
- 2.3. OPERATEURS 44
- 2.4. MESURE DE LA PIO 45
- 2.5. CALENDRIER ET DEROULEMENT DES MANIPULATIONS 45
- 2.6. ANALYSE STATISTIQUE 46

## 3. RESULTATS

- 3.1. MESURES DE PRESSION INTRAOCULAIRE 48
- 3.2. MESURES DE REPETABILITE ET DE REPRODUCTIBILITE 48
- 3.3. EFFET DE L'EXPERIENCE DE L'OPERATEUR 50

## 4. DISCUSSION

CONCLUSION 61

BIBLIOGRAPHIE 65

ANNEXES 75
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>Adrénocortico Tropic Hormone (Hormone corticotrope)</td>
</tr>
<tr>
<td>AIC</td>
<td>Angle irido-cornéen</td>
</tr>
<tr>
<td>AR</td>
<td>Opérateur de référence Alain Régnier</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient de variation</td>
</tr>
<tr>
<td>GH</td>
<td>Growth Hormone (Hormone de croissance)</td>
</tr>
<tr>
<td>HA</td>
<td>Humeur aqueuse</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimètre de mercure</td>
</tr>
<tr>
<td>OD</td>
<td>Œil droit</td>
</tr>
<tr>
<td>OG</td>
<td>Œil gauche</td>
</tr>
<tr>
<td>PIO</td>
<td>Pression intraoculaire</td>
</tr>
<tr>
<td>Pv</td>
<td>Pression veineuse épisclérale</td>
</tr>
<tr>
<td>SD</td>
<td>Ecart-type</td>
</tr>
<tr>
<td>TD</td>
<td>Opérateur Thomas Dulaurent</td>
</tr>
<tr>
<td>TV</td>
<td>Opérateur Thomas Verbois</td>
</tr>
</tbody>
</table>
TABLE DES ILLUSTRATIONS

**Figure 1** : mécanisme de sécrétion active de l’humeur aqueuse par l’épithélium non pigmentaire des procès ciliaires ............................................................................................................. 24

**Figure 2** : différence par rapport à la moyenne de la pression intraoculaire (en mmHg) mesurée par l'opérateur TD et l'opérateur de référence AR, selon la méthode de Bland-Altman ............................................................................................................. 51

**Figure 3** : différence par rapport à la moyenne de la pression intraoculaire (en mmHg) mesurée par l'opérateur TV et l'opérateur de référence AR, selon la méthode de Bland-Altman ............................................................................................................. 51

**Tableau 1** : Débit d’humeur aqueuse et autres variables dynamiques chez différentes espèces........................................................................................................................................ 27

**Tableau 2** : valeurs des pressions intraoculaires physiologiques chez différentes espèces........................................................................................................................................ 37

**Tableau 3** : valeurs de pression intraoculaire mesurées avec le Tono-Pen XL® et considérées comme diagnostiques pour l’hypertension ou l’hypotension oculaire dans différentes espèces........................................................................................................................................ 38

**Tableau 4** : anamnèse des chiens de race Beagle utilisés pour l'étude.......................................................................................................................... 43

**Tableau 5** : valeurs moyennes (± écart-type) (en mmHg) de la pression intraoculaire mesurée chez cinq chiens Beagle ........................................................................................................................................ 48
Tableau 6: écarts-types (mmHg) et coefficients de variation (%) de la variabilité intraopératerror intrajour (répétabilité) et interjour (reproductibilité) pour la mesure de la pression intraoculaire sur l'œil droit chez cinq chiens Beagle......................................................... 49

Tableau 7: écarts-types (mmHg) et coefficients de variation (%) de la variabilité intraopératerror intrajour (répétabilité) et interjour (reproductibilité) pour la mesure de la pression intraoculaire sur l'œil gauche chez cinq chiens Beagle......................................................... 49

Tableau 8: écarts (en mmHg) entre les valeurs extrêmes mesurées par chaque opérateur sur chaque chien de l'étude........................................................................................................ 53

Tableau 9 : coefficients de variation (%) de répétabilité et de reproductibilité obtenus lors de plusieurs études chez le chien, l'homme ou le rat................................................................. 55

Tableau 10 : coefficients de variation (%) de répétabilité et de reproductibilité pour des paramètres d'intérêt en suivi échocardiographique obtenus par Athanassiadis N. chez des chiens vigiles ............................................................................................................................ 56

Tableau 11: moyennes des mesures de pression intraoculaire (mmHg ±écart-type) obtenues dans différentes études chez plusieurs espèces................................................................. 57
<table>
<thead>
<tr>
<th>Tableau 1</th>
<th>Titre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexe 1</td>
<td>étude pilote: variation de la PIO chez deux chiens sains de race Beagle après instillation d’un anesthésique local</td>
<td>77</td>
</tr>
<tr>
<td>Annexe 2</td>
<td>ordre de passage des cinq chiens pour les trois opérateurs. Cet ordre est répété pendant les quatre jours consécutifs</td>
<td>78</td>
</tr>
<tr>
<td>Annexe 3</td>
<td>mesures de pression intraoculaire obtenues par les trois opérateurs sur cinq chiens de race Beagle (jours 1 et 2)</td>
<td>79</td>
</tr>
<tr>
<td>Annexe 4</td>
<td>mesures de pression intraoculaire obtenues par les trois opérateurs sur cinq chiens de race Beagle (jours 3 et 4)</td>
<td>80</td>
</tr>
<tr>
<td>Annexe 5</td>
<td>analyse statistique pour chaque opérateur sur l’œil droit et sur l’œil gauche</td>
<td>81</td>
</tr>
<tr>
<td>Annexe 6</td>
<td>étude des interactions “Chien*Opérateur” chez chaque opérateur sur l’œil droit et sur l’œil gauche</td>
<td>85</td>
</tr>
<tr>
<td>Annexe 7</td>
<td>étude d’un effet “Oeil” pour chaque opérateur</td>
<td>86</td>
</tr>
<tr>
<td>Annexe 8</td>
<td>étude de l’effet “Opérateur”</td>
<td>88</td>
</tr>
</tbody>
</table>
L’équilibre de la pression intraoculaire (PIO) est un facteur indispensable au maintien de l’intégrité des structures anatomiques de l’œil et de leur bon fonctionnement (cornée, choroïde et surtout rétine). La pression intraoculaire résulte de l’équilibre entre la production d’humeur aqueuse par les procès ciliaires et son élimination à travers l’angle irido-cornéen. La mesure indirecte de cette pression, ou tonométrie, est une part essentielle de l’examen ophtalmologique. Elle permet de diagnostiquer les hypertensions ou les hypotensions oculaires et de suivre l’efficacité d’un traitement mis en place chez un patient glaucomateux.

Le Tono-Pen XL® utilisé dans cette étude est un tonomètre électronique par aplanissement qui est la référence en ophtalmologie vétérinaire en raison de sa facilité d’utilisation et de sa grande maniabilité. Cependant une certaine variabilité des mesures est rapportée dans les études précédentes utilisant cet appareil, mais aucune ne l’a documenté en détail par le calcul d’écart-types ou de coefficients de variation de répétabilité et de reproductibilité.

L’objet de cette thèse est donc de préciser les performances de la méthode et de comparer celles de différents opérateurs en terme de répétabilité et de reproductibilité, après avoir synthétisé la bibliographie actuellement disponible concernant la pression intraoculaire et ses variations physiologiques.
1. L’HUMEUR AQUEUSE

L’humeur aqueuse est le liquide endoculaire limpide, constituant important du segment antérieur de l’œil. Elle est produite par les corps ciliaires au niveau de la chambre postérieure puis gagne la chambre antérieure en passant par la pupille avant d’être drainée par l’angle irido-cornéen.

Elle assure deux rôles importants : d’une part un rôle de transport par un apport de nutriments nécessaires au métabolisme des tissus oculaires et par une évacuation des déchets du catabolisme, et d’autre part elle participe au maintien de la pression intraoculaire (PIO) dans des normes physiologiques.

1.1. FORMATION DE L’HUMEUR AQUEUSE

1.1.1. NOTION DE BARRIERES HEMATO-OCULAIRES

Il existe des différences de concentration entre l’humeur aqueuse et le plasma sanguin. Par exemple, les molécules de poids moléculaire élevé telles que les protéines sont rencontrées en plus faible concentration dans l’humeur aqueuse. Ceci traduit l’existence d’une barrière sélective entre l’œil et la circulation sanguine. Le passage des constituants de l’humeur aqueuse à partir du plasma ne peut se faire qu’à travers les capillaires fenêtrés situés dans le stroma des procès ciliaires. La taille et la charge des molécules influencent donc leur passage, créant ainsi des gradients de concentration indispensables aux mécanismes de formation de l’humeur aqueuse. De plus ce passage limité des molécules vers le compartiment oculaire est important pour la biodisponibilité des médicaments administrés par voie systémique.
1.1.2. SITE ANATOMIQUE DE FORMATION

Le site de formation de l’humeur aqueuse est le corps ciliaire. Il est situé entre la racine de l’iris et le limbe cornéen et entoure sur toute sa circonférence l’équateur du cristallin. Le corps ciliaire est lui-même formé de plusieurs dizaines de plis radiaires réguliers appelés procès ciliaires, augmentant ainsi la surface en relation avec la chambre postérieure. Dans ces procès ciliaires, la vascularisation, qui prolonge celle de la choroïde, est organisée en un réseau dense de capillaires entourés par un tissu conjonctif lâche. La forme bombée des procès ciliaires est due aux boucles artérielles issues du grand cercle artériel de l’iris. Ces artères donnent brutalement des capillaires larges, aux parois minces et percées de pores de 20 à 120 μm de diamètre. L’essentiel du sang drainé rejoint ensuite les veines vorticéreuses et la choroïde. L’épithélium qui recouvre le stroma est formé d’une double assise cellulaire située entre deux limitantes (interne et externe) : une couche épithéliale externe pigmentaire et une couche épithéliale interne claire ou non pigmentaire, dont les cellules présentent un métabolisme particulièrement actif (1).

Outre son rôle dans la sécrétion de l’humeur aqueuse, le corps ciliaire est aussi le moteur de l’accommodation par les fibres zonulaires ancrées sur les procès ciliaires.

1.1.3. MECANISMES DE FORMATION

L’humeur aqueuse est formée principalement à partir du sang après passage des divers constituants à travers la barrière hémato-oculaire, soit par ultrafiltration soit par sécrétion active. Divers métabolites libérés par le cristallin ou le corps vitré complètent sa composition finale.

1.1.3.1. Ultrafiltration

Il s’agit d’un phénomène passif faisant appel aux gradients de pression et de concentration ionique entre le secteur plasmatique et le compartiment oculaire. La vascularisation du corps ciliaire tient une part importante dans l’ultrafiltration, le volume
d’humeur aqueuse formé correspond à environ 4 % du plasma ayant traversé les capillaires. Seul le transfert de molécules de petit poids moléculaire est possible, les grosses molécules ne pouvant pas franchir l’épithélium ciliaire.

Trois pressions interviennent dans le mécanisme d’ultrafiltration :
- la pression hydrostatique dans le capillaire sanguin, favorisant le passage de l’eau et des éléments solubles du plasma vers l’humeur aqueuse ;
- la pression oncotique, liée à l’accumulation de protéines dans le stroma dont les couches épithéliales sont peu perméables. Cette pression oncotique favorise le passage de l’eau du capillaire vers le stroma mais ralentit le flux hydro-électrolytique du stroma vers la chambre postérieure.
- la PIO dans la chambre postérieure.

La pression oncotique et la PIO s’opposent à la pression hydrostatique, ce qui limite son rôle dans la formation de l’humeur aqueuse, estimé à environ 30 %. De plus ce mécanisme est indépendant du débit artériel dans les procès ciliaires (2).

1.1.3.2. Sécrétion active

Il s’agit du deuxième mécanisme responsable de la formation de l’humeur aqueuse ; c’est le plus important quantitativement avec environ 70 % du volume total de l’humeur aqueuse formée.


Ce transport actif concerne les ions Na⁺ (environ 70 %), les ions CL⁻, une partie des ions K⁺, l’acide ascorbique et quelques acides aminés (2).
Figure 1 : mécanisme de sécrétion active de l’humeur aigueuse par l’épithélium non pigmentation des procès ciliaires (d’après HP. Lefebvre (2))

1.1.4. HUMEUR AQUEUSE SECONDE

Lorsque l’œil est en hypotension, il se forme en 45 minutes environ une humeur aqueuse permettant de redonner à l’œil sa tension initiale. Elle est dite « seconde » car sa composition est beaucoup plus proche de celle du plasma, sa concentration en protéines est 30 fois supérieure à celle de l’humeur aqueuse normale. En 48 heures, la composition initiale est rétablie (2).
1.2. ELIMINATION DE L’HUMEUR AQUEUSE

Après avoir été produite par les corps ciliaires, l’humeur aqueuse gagne la chambre antérieure en traversant la pupille puis elle est drainée par l’angle irido-cornéen, situé entre la jonction cornéo-sclérale et la base de l’iris, sur la face antérieure du corps ciliaire. L’humeur aqueuse retourne ainsi vers la circulation systémique par deux voies principales, la voie conventionnelle et la voie non conventionnelle ou voie uvéo-sclérale.

1.2.1. DRAINAGE CONVENTIONNEL PAR LA VOIE TRABECULAIRE

Cette voie correspond à l’écoulement de l’humeur aqueuse à travers les structures qui composent l’angle irido-cornéen, situé à la racine de l’iris, à l’intérieur d’un espace triangulaire à pointe postérieure, appelé la fente ciliaire. Dans sa partie antérieure, la fente ciliaire s’ouvre sur la chambre antérieure par des fibres radiaires unissant la base de l’iris au limbe cornéen. Ces expansions forment le ligament pectiné. Ce dernier est composé de fibres pouvant s’unir entre elles latéralement, surtout sur la face irienne, tandis que d’autres se divisent postérieurement en une rangée de fibres plus fines. Les fibres du ligament pectiné les plus antérieures sont appelées fibres primaires et les fibres plus fines situées postérieurement sont dites secondaires. Ces dernières sont liées aux fibres du réseau trabéculaire uvéal situé postérieurement (3,4,6). Le réseau trabéculaire est un arrangement de fibres qui comble la partie la plus postérieure de la fente ciliaire ; il est composé de deux parties distinctes : la partie la plus interne, appelée réseau trabéculaire uvéal, est organisée en fibres lâches, ménageant des espaces appelés espaces de Fontana ; la partie la plus externe, appliquée contre la face interne de la sclère, est organisée en fibres plus denses, c’est le réseau trabéculaire cornéo-scléral (5). Il s’agit d’une zone de forte résistance à l’écoulement de l’humeur aqueuse, mise en cause dans l’apparition du glaucome primaire à angle ouvert dans les races de chien prédisposées. Le réseau trabéculaire cornéo-scléral présente alors des fibres plus nombreuses et organisées de manière plus denses (7), cette atteinte, non visible à l’examen gonioscopique, se nomme une goniodysgénésie.

Après avoir passé ce dernier obstacle, l’humeur aqueuse est drainée par un système complexe de vaisseaux subdivisé en deux parties : tout d’abord le plexus aqueux, et ensuite le plexus veineux intrascléral.
- Le plexus aqueux est situé entre la partie externe du réseau trabéculaire cornéoscléral et la face interne des lamelles sclérales. Il est constitué de vaisseaux radiaires, aplatis et reliés entre eux par de nombreuses anastomoses (4).
- Le plexus veineux de la sclère se situe juste en arrière du limbe et fait suite au plexus aqueux.
- Les vaisseaux, logés dans l’épaisseur de la sclère, ont une disposition parallèle au limbe et sont au nombre de deux ou quatre, suivant qu’ils soient respectivement méridiens et latéraux ou dorsaux et ventraux. Un réseau complexe d’anastomoses le plus souvent radiaires, perpendiculaires aux vaisseaux, relie ces derniers. De ce plexus veineux partent ensuite les veines épi-sclérales à partir desquelles le retour veineux se poursuit par les veines ciliaires antérieures et les veines vorticoïdes (8).

1.2.2. DIFFUSION PAR LA VOIE UVEO-SCLÉRALE

La voie de drainage uvéo-sclérale, ou voie non conventionnelle, correspond à la diffusion de l’humeur aqueuse à travers l’iris, le corps ciliaire et la choroïde. Mise en évidence chez le chien par Gelatt en 1979, l’humeur aqueuse est d’abord résorbée par le corps ciliaire et l’iris avant de gagner la sclère et les espaces suprachoroïdiens jusqu’à la périphérie de la papille du nerf optique (9). L’humeur aqueuse est ensuite drainée par la circulation choroidienne et orbitaire, ainsi que par le système lymphatique. Une élévation de la PIO n’a que peu d’influence sur cette voie, elle limite simplement la taille des particules pouvant traverser (10,11). Cependant chez les chiens atteints de glaucome primaire à angle ouvert, il semble que cette voie d’élimination ne soit plus du tout effective une fois le glaucome établi (12). Barrie et coll. (13) ont étudié la proportion d’humeur aqueuse drainée par la voie uvéo-sclérale ; celle-ci représenterait 15 % du drainage total chez le chien sain et seulement 3 % chez le chien atteint de glaucome primaire. Le tableau 1 (page suivante) renseigne sur l’importance de l’élimination d’humeur aqueuse par cette même voie chez d’autres espèces. La contraction des muscles ciliaires, après instillation de pilocarpine par exemple, diminue l’écoulement d’humeur aqueuse en resserrant l’espace disponible entre les fibres musculaires ; à l’inverse, l’instillation d’atropine augmente légèrement le débit (9).
1.3. DYNAMIQUES DE L’HUMEUR AQUEUSE

La circulation dans la chambre antérieure se fait par des courants de convection grâce à la différence de température entre l’iris et la cornée refroidie par l’air et le milieu extérieur : l’humeur aqueuse monte le long de l’iris et redescend contre la cornée. L’humeur aqueuse est ensuite résorbée par l’une ou l’autre des voies vues précédemment.

La tonographie permet d’estimer la vitesse d’élimination de l’humeur aqueuse au sein de l’angle irido-cornéen, par la voie conventionnelle. Il s’agit d’une technique de tonométrie exercée sur la cornée pendant un temps plus long, entre 2 et 4 minutes. En considérant que la production d’humeur aqueuse ne varie pas pendant ce laps de temps, la différence de PIO entre le début et la fin de l’application de la pointe du tonographe de Schiotz sur la cornée est proportionnelle à la vitesse d’élimination de l’humeur aqueuse (14). D’autres techniques utilisent le turn-over de substances marquées, directement injectées dans la chambre antérieure (15). En 1977, Gelatt et coll. (15) ont calculé le coefficient de drainage de l’humeur aqueuse chez des chiens Beagles sains et chez des chiens atteints de glaucome primaire ; ils ont trouvé respectivement 0.24 et 0.09 µL/mmHg/min. Cependant une étude plus récente (2001) (16) faisant appel à la fluorophotométrie donne des valeurs bien supérieures (5.22 ±1.87 µL/min). Il est vrai que la tonographie ne mesure que la vitesse de drainage par la voie conventionnelle, alors que la fluorophotométrie mesure à la fois le drainage par les voies conventionnelles et non conventionnelles.

Tableau 1 : Débit d’humeur aqueuse et autres variables dynamiques chez différentes espèces

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Production (µL/min)</th>
<th>Facilité d’écoulement (µL/mmHg/min)</th>
<th>Elimination uvéosclérale (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homme (17,19)</td>
<td>2</td>
<td>0.28</td>
<td>4-14</td>
</tr>
<tr>
<td>Homme (glaucome) (19)</td>
<td>ND</td>
<td>0.16</td>
<td>ND</td>
</tr>
<tr>
<td>Singe (17)</td>
<td>1.2</td>
<td>0.73</td>
<td>30-60</td>
</tr>
<tr>
<td>Chien (14,15,17)</td>
<td>2.5</td>
<td>0.24</td>
<td>15</td>
</tr>
<tr>
<td>Chien (glaucome) (14,15)</td>
<td>ND</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>Chat (17)</td>
<td>15</td>
<td>0.19</td>
<td>3</td>
</tr>
<tr>
<td>Lapin (17)</td>
<td>4.0</td>
<td>0.23</td>
<td>13</td>
</tr>
<tr>
<td>Poney (18)</td>
<td>ND</td>
<td>0.88</td>
<td>ND</td>
</tr>
</tbody>
</table>
ND : non donné dans la source
2. LA PRESSION INTRAOCULAIRE

2.1. DEFINITION

La PIO est déterminée par la pression exercée par tout le contenu du globe oculaire, l’élasticité et la rigidité de la paroi et les diverses pressions exercées par les muscles s’insérant sur le globe. Cependant, sa stabilité est en grande partie assurée par l’équilibre établi entre la production et l’élimination de l’humeur aqueuse.

La PIO dépend du débit de l’humeur aqueuse, de sa résistance à l’écoulement et de la pression veineuse épisclérale selon la relation :

\[ \text{Pio} = R \cdot D + \text{Fv} \]

Pour un débit donné, la résistance du système conventionnel est responsable d’un tiers à la moitié de la PIO, le reste résultant de la pression veineuse épisclérale. Cette relation permet d’expliquer le fait qu’une élévation temporaire de la PIO entraîne une diminution temporaire du débit de l’humeur aqueuse, par baisse de l’ultrafiltration, ainsi qu’une augmentation temporaire de la résistance à l’écoulement (2,13).

2.2. METHODES DE MESURE

2.2.1. MANOMETRIE

Il s’agit d’une mesure directe de la pression intraoculaire, considérée comme la plus fiable. Une aiguille est introduite dans le segment antérieur de l’œil et se trouve reliée à une colonne manométrique. Une anesthésie générale et profonde est nécessaire. Cette méthode sert de référence dans les études expérimentales visant à comparer la précision des autres méthodes de mesure.
2.2.2. TONOMETRIE

Il ne s’agit pas d’une mesure directe de la PIO, mais indirectement de son effet sur la cornée ou la sclère. Plusieurs méthodes sont utilisées (20):

- la tonométrie digitale : c’est la méthode la plus simple mais aussi la moins précise, elle consiste à recueillir l’impression de tension ou de dureté du globe oculaire par palpation digitale transpalpébrale.

- La tonométrie par indentation : cette méthode mesure l’indentation subie par la cornée lorsqu’un piston de poids connu est appliquée sur celle-ci, l’indentation étant inversement proportionnelle à la pression intraoculaire. Les tonomètres utilisant cette technique sont les tonomètres de Schiotz et de Schiotz-Comberg.

- La tonométrie par aplanissement : cette technique mesure la force nécessaire pour aplanir une surface donnée de la cornée, cette force étant proportionnelle à la tension oculaire. Le tonomètre électronique utilisant cette technique est le Tono-Pen XL®, actuellement le plus utilisé en ophtalmologie vétérinaire. Les autres, tels que les tonomètres de Goldmann ou de Mackay-Marg, sont respectivement réservés à l’usage expérimental, pour des raisons de coût ou de manipulation, et non commercialisés en Europe.

- La tonométrie par rebond : il s’agit d’une nouvelle technique réalisable sans anesthésie locale. Le tonomètre propulse à une vitesse connue une petite fléchette magnétisée au bout arrondi (1 mm de diamètre) qui rebondit sur la cornée et revient avec une vitesse proportionnelle à la pression s’appliquant sur la cornée. Le modèle actuel est le TonoVet® (également dénommé Icare® dans la littérature anglo-saxonne).

2.3. BIAIS POSSIBLES LORS DE LA MESURE AU TONOPEN

2.3.1. ERREURS LIEES A L’OPERATEUR

Une contention excessive des paupières ou de l’animal s’accompagne habituellement d’une augmentation de la pression. D’une part, la contention céphalique de l’animal peut
provoquer la compression des veines jugulaires, augmentant la pression dans les veines épiscérales. Cela augmente la résistance à l’écoulement de l’humeur aqueuse quand celle-ci est drainée par l’angle irido-cornéen. La pression veineuse épiscérale intervient dans la formule la PIO vue précédemment. D’autre part, l’opérateur doit ouvrir les paupières pendant la prise de mesure par un appui digital sur les paupières inférieure et supérieure. Cet appui peut alors être à l’origine d’une pression exercée sur le globe oculaire et augmenter ainsi la PIO. Lors de la mesure, la pointe de l’instrument doit être appliquée sur la cornée, le mieux étant sur la zone centrale de la cornée, et non sur une zone proche du limbe ou sur la sclère, dans ce cas la PIO est faussement augmentée (21).

De plus un instrument sale, non calibré ou mal réglé donnera des valeurs erronées.

**2.3.2. ERREURS LIÉES À L’ÉTAT DE L’ŒIL EXAMINE**

Des modifications morphologiques de la cornée peuvent fausser les mesures. Il peut tout aussi bien s’agir de modifications pathologiques comme de modifications anatomiques liées à la conformation de l’animal. En effet, la courbure et la rigidité de la cornée peuvent influencer le résultat. Sur un œil volumineux, la courbure n’étant pas très importante, la zone sera aplanie plus facilement par rapport à un œil de plus petit diamètre où la courbure sera plus importante. Dans ce cas là, la PIO sera sous-estimée, et inversement sur l’œil à forte courbure. L’épaisseur de la cornée peut aussi modifier le résultat de la mesure, plus la cornée est épaissie plus la PIO mesurée sera surestimée (22,23). Inversement sur une cornée fine, la rigidité sera moins importante et la PIO sera sous-estimée. Il est donc nécessaire de corriger la valeur obtenue avec le Tono-Pen XL® sur des yeux présentant un cédème cornéen, une fibrose étendue sur la cornée ou encore chez les chiens atteints de glaucome chronique car la cornée s’épaissit généralement sur un œil hypertendu. De plus les irrégularités présentes sur la cornée lors de kératite peuvent donner des valeurs de pression anormales. Cependant, la présence d’une lentille sur l’œil lors de la mesure ne modifie pas significativement le résultat, il sera donc inutile de la retirer avant d’effectuer la mesure (24). Enfin, lors de luxation antérieure du cristallin, ce dernier peut représenter un obstacle au bon aplanissement de la cornée. Les valeurs obtenus seront alors sous-estimées.
2.3.3. MESURES REPETEES

La répétition des mesures avec des tonomètres par aplanissement entraîne petit à petit chez l’homme une diminution de la pression intraoculaire. Chez le chien, cet effet a été démontré avec le tonomètre de Mackay-Marg dont le fonctionnement rejoint le principe de la tonographie (25). Cependant un intervalle entre deux mesures de 2 ou 10 minutes limite cet effet et n’entraîne pas de diminution significative de la PIO (26).

2.4. CONTRE-INDICATIONS A LA MESURE DE LA PIO

La mesure de la PIO avec un tonomètre par aplanation peut être contre-indiquée dans les cas où ce geste peut provoquer des complications. En effet, un ulcère profond de la cornée ou avec descémétocèle peut engendrer une perforation lors de la mesure, la cornée étant extrêmement fragile. Ensuite lors de luxation antérieure du cristallin, ce dernier se retrouve tout proche de l’endothélium et un appui sur la cornée peut provoquer l’abrasion de l’endothélium sur la cristalloïde antérieure, à l’origine d’un œdème cornéen plus ou moins réversible. De plus, si le cristallin n’est que sub-luxé, l’augmentation de la PIO lors des contacts du tonomètre avec la cornée peut entraîner la rupture de fibres zonulaires supplémentaires, augmentant ainsi la taille du croissant aphake et pouvant aller jusqu’à la luxation complète (27).
3. LES SOURCES DE VARIATION DE LA PIO

L’utilisation du tonomètre constitue, comme on vient de le voir, une source de variation importante mais l’autre facteur de variation à ne pas négliger est l’animal. Chez le chien en bonne santé, les conditions faisant varier la PIO sont nombreuses.

3.1. VARIATIONS PHYSIOLOGIQUES

3.1.1. FACTEURS DE VARIATIONS


3.1.1.1. Variations nycthémérales

Il a été démontré chez l’homme une évolution de la PIO suivant un rythme nycthéméral, avec une élévation de celle-ci pendant la phase nocturne, l’acrophase se situant entre 4 et 5 heures, puis une diminution progressive pendant la phase diurne jusqu’à environ 18 heures (28). Chez le chien, des variations similaires ont été notées avec une PIO plus importante le matin que le soir, mais sans que des mesures soient effectuées pendant le reste de la nuit (29). Chez le chat, espèce plutôt nocturne, le profil général de la courbe reste inchangé mais se trouve décalé avec l’acrophase entre 21 heures et minuit et la bathyphase dans la journée. De plus ce rythme reste inchangé lorsque les chats sont maintenus dans l’obscurité pendant 48 heures, ce qui suggère l’intervention d’une horloge interne (30). Il faudra donc réaliser les suivis toujours au même moment de la journée et intégrer ce rythme dans la thérapeutique, que ce soit comme facteur de risque supplémentaire de dégradation du champ visuel ou comme renseignement pour déterminer la pression cible d’un traitement anti-glaucomateux.
3.1.1.2. Variations avec l’âge

Chez l’homme, les études montrent que la PIO augmente légèrement avec l’âge au moins jusqu’à 70 ans, mais il est difficile de savoir si cette augmentation reflète celle de la pression moyenne normale ou s’il s’agit de l’apparition d’une hypertorie oculaire après 40 ans chez un grand nombre de personnes. Au contraire chez le chien, les études sont en faveur d’une baisse de la PIO avec l’âge. Lors d’une comparaison des mesures effectuées sur de nombreux chiens, les uns étant jeunes et les autres plus âgés, Gelatt et coll. trouvent une moyenne significativement inférieure dans le groupe des vieux chiens, avec comme moyennes 20.4 ±6.1 mmHg et 16.1 ±5.1 mmHg respectivement pour le groupe de chiens âgés de moins de 2 ans et pour celui des chiens de plus de 6 ans (31). Mughannam et coll. ont suivi 32 jeunes Labradors de 6 semaines pendant plus d’un an et ont comparé les pressions intraoculaires. La PIO est restée stable pendant la croissance des chiens, n’intervenant donc pas dans l’extension du globe oculaire (32). Cependant chez le chat, il semblerait que la PIO reste stable tout au long de la vie, même chez le chat très âgé (33,34).

3.1.1.3. Autres facteurs physiologiques influençant la PIO

Il a été démontré chez l’homme un rythme circannuel de la PIO dans les pays tempérés avec des valeurs moyennes plus élevées l’hiver que l’été. La grossesse chez la femme aurait un effet hypotonisant oculaire avec un retour dans les valeurs normales dans un délai de 3 mois après la naissance. Le cycle menstruel entraînerait aussi des variations pressionnelles lors des règles. Tous ces facteurs de variation n’ont jamais été étudiés chez le chien, les études s’accordent à dire qu’il n’y a pas de différences entre les mâles et les femelles (31). Chez le chat, le cycle ovarien semble avoir une influence sur la PIO avec des valeurs supérieures pendant l’oestrus (35) La position est un facteur de variations important chez l’homme, le passage d’une position debout à une position allongée augmente la PIO, et par rapport au décubitus dorsal, le passage en décubitus latéral gauche provoque une augmentation de PIO sur l’œil gauche et une diminution sur l’œil droit. Une étude menée chez le cheval a montré une différence significative des mesures de pression prises lorsque la tête du cheval est située en hauteur par rapport au cœur ou en dessous du niveau du cœur (36). Dans une étude comparant l’effet de l’anesthésie générale sur la PIO, les chiens étaient tous
couchés sur le côté gauche, et il a été observé que toutes les valeurs de la PIO sur l’œil gauche étaient supérieures à celles mesurées sur l’œil droit (37).

Dans l’espèce canine, la force exercée sur le collier est à l’origine d’une augmentation de pression intraoculaire significative, d’environ 7.4 mmHg, mais transitoire car après une minute les valeurs redeviennent semblables à celles mesurées avant la traction sur le collier. Une telle modification de pression n’a pas lieu lorsque le chien est tenu avec un harnais (38). Cette constatation implique que le harnais devrait être conseillé après toute chirurgie endoculaire ou pour tout chien prédisposé à une luxation du cristallin.

3.1.2. REGULATION DE LA PIO PAR L’ORGANISME

Chez les animaux, que ce soit chez le chien, le chat ou le lapin, le rythme nyctéméral de la pression intraoculaire persiste même lorsque les animaux sont maintenus dans l’obscurité, ce qui permet de définir ce rythme comme circadien, sous la dépendance d’une horloge biologique interne. Il existe donc des facteurs nerveux, mécaniques et hormonaux qui agissent sur le débit de sécrétion du corps ciliaire, sur l’élimination trabéculaire et uvéosclérale de l’humeur aqueuse et sur le système vasculaire adjacent (pression veineuse épisclérale).

3.1.2.1. Régulation nerveuse

Le système nerveux central intervient de manière capitale dans le contrôle de la PIO. Cette régulation nerveuse est possible grâce à l’existence d’une voie afférente, d’un centre intégrateur et d’une voie efférante (39).

La voie afférente n’est pas parfaitement connue mais il a été montré l’existence d’une activité électrique le long des nerfs ciliaires courts après modification de la PIO. Les fibres nerveuses sensitives sont nombreuses au sein de la chambre antérieure, des procès ciliaires et de l’iris. Des neurones, dont le corps cellulaire est situé dans le ganglion trigéminal, envoient des dendrites dans la partie cornéo-sclérale du trabéculum. Celles-ci sont en contact avec des fibres élastiques et jouent le rôle de mécanorécepteurs, susceptibles d’être activés par des modifications de la PIO.

Le centre essentiel de la régulation de la PIO est le noyau suprachiasmatique. Sa destruction thermique entraîne chez le lapin une diminution de la PIO ainsi qu’une baisse de
l’augmentation nocturne de mélatonine car le noyau suprachiasmatique projette sur la glande pinéale via le noyau paraventriculaire et le ganglion cervical sympathique, responsable de l’innervation sympathique oculaire. De plus le noyau suprachiasmatique projette également sur le noyau parasymphathique du nerf oculomoteur, contrôlant l’innervation parasymphathique oculaire. Lors d’exposition lumineuse en début de nuit, la synthèse physiologique de mélatonine est inhibée, aboutissant chez l’homme à une baisse de la pression intraoculaire nocturne.

Le système sympathique joue un rôle important sur la production de l’humeur aqueuse via les récepteurs α1 et β adrénergiques. La stimulation du tronc sympathique cervical est à l’origine d’une augmentation de la PIO et d’une augmentation de la concentration intracaméral de noradrénaline, suggérant que les récepteurs α1-adrénergiques provoquent une élévation de la résistance à l’écoulement de l’humeur aqueuse pendant la nuit et que les récepteurs β-adrénergiques contribuent à l’augmentation de la sécrétion d’humeur aqueuse, le tout étant responsable de l’élévation nocturne de la PIO. L’effet des récepteurs α1-adrénergiques semblerait être prédominant sur l’augmentation nocturne de pression. En effet, l’instillation d’un antagoniste α1-adrénergique diminue de façon dose-dépendante la PIO nocturne, alors qu’un antagoniste α2-adrénergique ou un antagoniste β-adrénergique sont sans effet. De plus l’instillation d’apraclonidine, un agoniste α2-adrénergique, entraîne une diminution de la PIO chez le chien, probablement par inhibition de la libération de noradrénaline après stimulation des récepteurs présynaptiques (40).

Le système parasymphathique possède une action hypertensive, alors que paradoxalement les agents parasympathomimétiques, employés en thérapeutique oculaire, ont plutôt une action hypotensive. La stimulation du nerf oculomoteur III se traduit chez le chat par un myosis et une augmentation bilatérale de la PIO. L’ablation du ganglion ciliaire, qui représente un relais parasymphathique, provoque chez le chien une diminution de pression intraoculaire. Mais au contraire, l’action de la pilocarpine, agent parasympathomimétique, sur les récepteurs muscariniques de l’iris provoque la contraction du sphincter irien, ce qui induit un élargissement du réseau trabéculaire et donc un accroissement de l’élimination de l’humeur aqueuse par la voie conventionnelle. De la même manière, une stimulation cholinergique dans le muscle ciliaire provoque la contraction de ce dernier, aboutissant au même résultat (39).
3.1.2.2. Régulation neuro-humorale et hormonale

En dehors des transmetteurs adrénergiques et cholinergiques, d’autres neurotransmetteurs semblent jouer un rôle dans la régulation de la PIO (2).

Les peptides opioïdes, des composés endogènes ayant des propriétés voisines de celles de la morphine, entraînent une diminution de la PIO.

Les prostaglandines jouent un rôle dans la contraction du muscle ciliaire, intervenant sur l’élimination de l’humeur aqueuse par la voie uvéo-sclérale. La concentration intracaméral éulaire en prostaglandines F2α est plus élevée le jour que la nuit chez l’homme, inversement à la pression intraoculaire. Les prostaglandines augmenteraient la perméabilité du muscle ciliaire en activant des métalloprotéases responsables de l’hydrolyse de la matrice extra-cellulaire entre les fibres du muscle ciliaire.

La sérotonine, administrée en intraveineuse, entraîne une diminution de la PIO chez le chien.

La mélatonine provoque une diminution de la PIO chez l’homme, le mécanisme a été détaillé précédemment.

Les glucocorticoïdes, l’ACTH, la GH et la testostérone ont des effets hypertensifs oculaires, D’autres hormones telles que la progestérone ou la relaxine ont au contraire une action hypotensive.

3.2. VALEURS USUELLES

3.2.1. NORMES PHYSIOLOGIQUES CHEZ LES DIFFERENTES ESPECES

Les valeurs normales de la PIO admises chez les différentes espèces sont présentées dans le tableau 2.
### Tableau 2 : valeurs des pressions intraoculaires physiologiques chez différentes espèces

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Pression (mmHg)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homme</td>
<td>15.34 ±2.73</td>
<td>Marquez et coll. (41)</td>
</tr>
<tr>
<td>Chien</td>
<td>19.2 ±5.9</td>
<td>Gelatt et coll. (31)</td>
</tr>
<tr>
<td>Chat</td>
<td>19.7 ±5.6</td>
<td>Miller et coll. (42)</td>
</tr>
<tr>
<td>Cheval</td>
<td>15 – 30</td>
<td>Brooks et coll. (43)</td>
</tr>
<tr>
<td>Vache</td>
<td>26.9 ±6.7</td>
<td>Gum et coll. (44)</td>
</tr>
</tbody>
</table>

### 3.2.2. VALEURS DIAGNOSTIQUES D’UNE MODIFICATION DE LA PIO

La littérature propose, en plus de normes physiologiques et de moyennes normales pour chaque espèce, des valeurs dites diagnostiques. Par exemple chez l’homme, une PIO supérieure à 21 mmHg est considérée comme diagnostique d’hypertension oculaire ou de glaucome. En s’intéressant à l’étude de Romanet et coll. (28) sur le rythme nyctéméral de la PIO, une moyenne de 15 mmHg correspond à la valeur prise pendant la bathyphase qui a lieu dans l’après-midi. Or dans cette même étude, les patients mesurés à 9 heures du matin présentent une PIO plus élevée, entre 18 et 19 mmHg environ, et ceci en raison du rythme nyctéméraque de la PIO. Si on ajoute à cela une variabilité de la mesure d’environ 3 mmHg, due à la méthode et à l’opérateur, certains de ces patients peuvent être considérés comme glaucomateux. Ainsi il est important de prendre en compte le moment de la journée où a été effectuée la mesure et l’écart-type relatif à celle-ci avant de pouvoir conclure à une hypo ou à une hypertension oculaire. De la même manière, la valeur considérée comme diagnostique pour la glaucope chez le chien est 25 mmHg. Cependant dans l’étude de Gelatt et Mackay (31) les valeurs mesurées sur 421 chiens sains ont variées entre les extrêmes de 4 à 42 mmHg. Ce qui conduit à dire qu’il faut considérer la mesure de pression intraoculaire comme un indice supplémentaire lors d’une suspicion d’hypertension et non comme un examen diagnostique. Ces valeurs dites diagnostiques sont présentées dans le tableau 3 (page suivante).
Tableau 3 : valeurs de pression intraoculaire mesurées avec le Tono-Pen XL® et considérées comme diagnostiques pour l'hypertension ou l'hypotension oculaire dans différentes espèces

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Pression (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hypertension</strong></td>
<td></td>
</tr>
<tr>
<td>Homme (41)</td>
<td>&gt; 21</td>
</tr>
<tr>
<td>Chien (31)</td>
<td>&gt; 29</td>
</tr>
<tr>
<td>Chat (42)</td>
<td>&gt; 31</td>
</tr>
<tr>
<td>Cheval (43)</td>
<td>&gt; 30 à 35</td>
</tr>
<tr>
<td><strong>Hypotension</strong></td>
<td></td>
</tr>
<tr>
<td>Homme</td>
<td>&lt; 10</td>
</tr>
<tr>
<td>Chien (31)</td>
<td>&lt; 11</td>
</tr>
<tr>
<td>Chat (42)</td>
<td>&lt; 9</td>
</tr>
<tr>
<td>Cheval (43)</td>
<td>&lt; 15</td>
</tr>
</tbody>
</table>

Nous pouvons également faire la même remarque concernant la différence physiologique admise entre les valeurs de PIO des deux yeux. Il est admis que la valeur de l’œil droit ne doit pas différer de plus de 5 mmHg de la valeur de l’œil gauche sur un chien sain. Il s’agit dans ce cas là uniquement de la variation biologique. Or lors de la mesure de la pression sur chacun des deux yeux, il se rajoute à cette variation biologique une variation métrologique. Cette dernière ne peut être estimée qu’à partir de la variabilité de l’appareil de mesure et de celle de l’opérateur. Il est donc nécessaire de connaître les propriétés métrologiques de la tonométrie et de quantifier la répétabilité de l’opérateur grâce au calcul de son écart-type ou de son coefficient de variation. Tout ceci sera développé dans la partie expérimentale de cette thèse.
2ème PARTIE :

ETUDE EXPERIMENTALE DE LA MESURE DE LA
PRESSION INTRAOCULAIRE CHEZ LE CHIEN AVEC LE
TONOPEN

1. PROPRIETES METROLOGIQUES DE LA MESURE DE LA
PRESSION INTRAOCULAIRE

1.1. NOTION DE REPETABILITE ET DE REPRODUCTIBILITE

Le suivi clinique d’un animal atteint de glaucome ou prédisposé à cette affection, nécessite de réaliser régulièrement des mesures de pression intraoculaire et de pouvoir les comparer. Ainsi toute évolution de la valeur de la pression intraoculaire lors du suivi constitue un renseignement important pour le clinicien sur l’efficacité ou l’inefficacité du traitement mis en place. Cette capacité de l’opérateur à répéter avec exactitude les mesures correspond aux notions de répétabilité et de reproductibilité. La répétabilité mesure la variabilité intrajour des valeurs obtenues par un opérateur, tandis que la reproductibilité mesure la variabilité interjouir. Afin d’étudier la répétabilité, il est nécessaire que les mesures soient toutes réalisées dans les mêmes conditions, sans que la méthode ne puisse interférer avec la prise de mesures (45).

1.2. ETUDES METROLOGIQUES EN TONOMETRIE

Dans la littérature, les études métrologiques, le plus souvent comparatives, s’intéressent à la précision des tonomètres, grâce à des systèmes de manométrie adaptés sur des yeux de chiens anesthésiés ou des yeux énucléés et permettant de régler précisément la
PIO. Ainsi, Görg et coll. (46) ont testé la précision de quatre tonomètres différents, dont le Tono-Pen XL® (Oculab). Chaque tonomètre est utilisé à la fois sur un groupe d’yeux prélevés sur des cadavres et équipés de manomètre, sur un groupe de chiens de race Beagle d’abord vigiles puis anesthésiés, et enfin sur un groupe de chiens vigiles atteints de glaucome. La comparaison des mesures obtenues avec le Tono-Pen XL® et de celles données par le manomètre montre que cet appareil a tendance à sous-estimer de plus en plus la PIO à mesure que celle-ci augmente. D’autres études antérieures étaient arrivées à la même conclusion chez le chien (47, 48), ou encore chez le chat, le cheval, les bovins et les ovins (49). Cette même étude rappelle cependant que cet appareil a été conçu pour mesurer la PIO chez l’homme et que donc il nécessite l’utilisation de facteurs de correction pour les autres espèces. Dans l’étude de Görg et coll., chaque valeur de pression correspondait à une moyenne de trois mesures ; de ce fait, ils ont estimé que la répétabilité de chaque tonomètre pouvait être évaluée par la moyenne de la différence entre la plus grande et la plus petite des trois mesures répétées. Concernant le Tono-Pen XL®, cette différence moyenne est plus importante sur les chiens atteints de glaucome (écart moyen de 3.73 mmHg) que sur les chiens sains vigiles (écart moyen de 2.40 mmHg), ils en concluent donc que la répétabilité de l’appareil diminue à mesure que la PIO augmente (46).

En 1993, une étude menée sur des rats a calculé combien de mesures étaient nécessaires afin d’obtenir un écart-type convenable avec le Tono-Pen 2® (BioRad, ancienne version du Tono-Pen XL) par rapport aux valeurs obtenues avec le manomètre. A des pressions intraoculaires faibles (inférieures à 25 mmHg), 10 mesures étaient suffisantes, alors que pour des valeurs de pression supérieures à 25 mmHg, 15 mesures étaient nécessaires (50).

La répétabilité des mesures de PIO effectuées avec le Tono-Pen XL® (Mentor) a également été évaluée chez le rat par Goldblum et coll. en 2002. Sur 18 rats anesthésiés, des manomètres ont été placés sur chacun des deux yeux. Cinq mesures de pression étaient réalisées sur chaque œil à l’aide du Tono-Pen XL® et du tonomètre à rebond ICare®. Les coefficients de variation de répétabilité déduits étaient de 14,5 % pour le TonoPen et de 4,6 % pour le tonomètre à rebond (51).

Par ailleurs, une étude en médecine humaine a été menée sur 31 enfants âgés de 6 à 14 ans chez lesquels une mesure de PIO était réalisée sur chaque œil en deux occasions différentes, espacées de 2 à 35 jours, par le même opérateur et en utilisant le Tono-Pen XL® (Oculab). L’écart-type de reproductibilité calculé était de 5,00 mmHg, avec 71 % des écarts entre chaque jour faisant moins de 2 mmHg (52).
1.3. NOTION D’EFFET OPERATEUR

Au cours du suivi de la pression intraoculaire, pour pouvoir exploiter des mesures répétées, le clinicien doit prendre en compte les facteurs de variation possible lors de l’examen. Il s’agit d’une part de facteurs biologiques, comme par exemple la race, l’âge, la taille, le moment de la journée (28), le caractère ou encore une affection que peut présenter l’animal, et d’autre part de facteurs inhérents à la technique, tels que la position de l’animal, sa contention, le matériel utilisé ou l’opérateur (31). Ce dernier facteur a été peu étudié en médecine vétérinaire, et jamais réellement quantifié. Lors d’un suivi, quelle est la part des différences mesurées imputables à l’opérateur ? Autrement dit, l’opérateur peut-il être une source d’erreur dans l’interprétation des données récoltées ?

La plupart des études calcule la variabilité du Tono-Pen XL® par rapport à la manométrie ou par rapport à d’autres tonomètres (46,53,54), seules quelques unes font intervenir plusieurs opérateurs, que ce soit de même statut ou bien d’expérience inégale. Une étude réalisée en 1991 a testé cet effet « opérateur » sur trois tonomètres : le Tono-Pen®, le tonomètre de Perkins et le tonomètre de Schiotz. Des opérateurs expérimentés et d’autres non expérimentés (entre 10 et 50 essais avec chaque tonomètre) ont pris trois mesures répétées sur des yeux reliés à un manomètre et à un oscilloscope. Lors d’une prise de mesure, le manomètre calcule l’augmentation de pression générée par le contact du tonomètre sur la cornée et l’oscilloscope enregistre le nombre de contacts nécessaire afin d’obtenir une valeur de pression convenable. Ainsi avec le Tono-Pen®, un opérateur expérimenté obtient une mesure après 5.4 contacts en moyenne, produisant à chaque contact de l’appareil avec la cornée une augmentation moyenne de 6.7 mmHg, alors qu’un opérateur inexpérimenté devra réaliser en moyenne 9.5 contacts avec une augmentation de pression de 17.5 mmHg. Le contact entre le tonomètre et la cornée est donc important, ce qui nécessite de prendre des précautions sur des cornées fragilisées. Ces nombreux contacts sont à l’origine d’une augmentation de la PIO chez l’homme (27). Cependant des mesures répétées avec le Tono-Pen XL® (Oculab) ne produisent pas d’augmentation ou de diminution significative de la PIO chez le chien pouvant entraîner des biais sur les mesures suivantes selon Miller et coll., dans la mesure où le Tono-Pen XL® est utilisé en premier et non après des mesures effectuées avec un autre tonomètre (25).

Une étude espagnole plus récente a évalué la répétabilité chez l’homme du Tono-Pen XL® (Mentor) pour deux manipulateurs différents : un ophtalmologiste (expérimenté) et un
médecin généraliste (inexpérimenté) (41). Chaque opérateur mesurait après anesthésie locale cinq fois un des deux yeux de 35 patients avec une PIO normale et de 20 patients atteints d’hypertension oculaire. Les moyennes obtenues sur l’ensemble des patients, atteints ou non d’hypertension oculaire, ont été : pour l’optalmologiste 20.90 ± 4.60 mmHg et pour le médecin généraliste 20.26 ± 5.27 mmHg tandis que les coefficients de variation de répétabilité étaient respectivement de 9.6 % et 8.3 %. Concernant uniquement les patients sains, les résultats ont été 15.34 ± 2.73 mmHg et 15.75 ± 3.52 mmHg respectivement pour l’optalmologiste et pour le médecin généraliste. Cette étude montre donc que les mesures de PIO au Tono-Pen XL® (Mentor) présentent une variabilité non négligeable, mais un opérateur peu entraîné peut obtenir des valeurs proches de celles obtenues par un optalmologiste. En raison de cette importante variabilité et de sa tendance à sous-estimer les hautes valeurs de pression, le TonoPen n’a pu identifier dans cette étude une valeur de PIO supérieure ou égale à 21 mmHg et mesurée avec un tonomètre de Perkins, qu’avec une sensibilité de 40 % et une spécificité de 94 à 97 % (41) ; c’est-à-dire que les mesures au moins égales à 21 mmHg peuvent être interprétées comme une hypertension oculaire avec une certitude de 94 %, mais que 60 % des mesures réellement supérieures ou égales à cette valeur seuil seront sous-estimées en dessous de 21 mmHg et donc considérées comme des valeurs de pression normale.

Dans le domaine de la tonométrie vétérinaire, si quelques études ont évalué la répétabilité de la méthode, aucune à notre connaissance n’a cherché à déterminer la variabilité intra et interopérateur avec le Tono-Pen XL®. alors que cet appareil est très utilisé dans les études concernant l’efficacité pharmacologique de certains médicaments.
2. MATERIEL ET METHODE

2.1. ANIMAUX


Tableau 4: anamnèse des chiens de race Beagle utilisés pour l'étude

<table>
<thead>
<tr>
<th>N° d'identification expérimentale</th>
<th>Sexe</th>
<th>Date de naissance</th>
<th>N° de tatouage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>01/02/2005</td>
<td>2 EGN 907</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>03/02/2005</td>
<td>2 EGN 896</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>04/02/2005</td>
<td>2 EGN 930</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>09/02/2005</td>
<td>2 EGN 975</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>16/02/2005</td>
<td>2 EGN 957</td>
</tr>
</tbody>
</table>
2.2. TONOMETRE UTILISE

Les mesures ont été réalisées avec un tonomètre à aplanissement (Tono-Pen XL®, Mentor, Norwell, MA, USA). Toutes les mesures ont été effectuées avec un seul appareil. Son utilisation a nécessité une anesthésie locale sur chaque œil mesuré. L’appareil a été utilisé selon les recommandations du fabricant et étaillonné chaque jour avant le début de l’expérience.

Pour chaque mesure, la pointe du Tono-Pen XL®, d’une largeur de 3.2 mm, a été mise en contact avec le vertex de la cornée de manière brève et répétée. Le tonomètre a ensuite calculé la PIO en fonction de la force nécessaire pour aplani une surface donnée de la cornée. La valeur de la pression intraoculaire était affichée sur un écran digital situé sur la partie supérieure de l’appareil. Lors d’un contact efficace entre la pointe du tonomètre et la cornée, un bref signal sonore (« bip ») était audible, puis après cinq à six contacts satisfaisants, un double signal sonore (double « bip ») nous alertait de la fin de la mesure. La valeur alors affichée correspondait à la moyenne des valeurs enregistrées à chaque contact, complétée par la mesure du coefficient de variation, qui pouvait être inférieur à 5%, inférieur à 10%, inférieur à 20% ou supérieur à 20 %.

2.3. OPERATEURS

Nous nous sommes intéressés, dans cette étude, à la variabilité des mesures effectuées avec le Tono-Pen XL® en fonction de l’expérience du manipulateur. Trois manipulateurs ont participé au recueil des données, du plus expérimenté au plus novice : Alain Régnier, professeur en physiopathologie oculaire à l’Ecole Nationale Vétérinaire de Toulouse, a été l’opérateur de référence pour l’ensemble de l’étude ; il utilise le Tono-Pen XL® depuis plusieurs années et a lui-même assuré la formation des deux autres opérateurs que sont Thomas Dulaurent, docteur vétérinaire et chargé de consultation à l’Ecole Nationale Vétérinaire de Toulouse, utilisant l’appareil depuis deux ans, et Thomas Verbois, étudiant à l’Ecole Nationale Vétérinaire de Toulouse, ayant réalisé durant sa formation entre cinquante et soixante mesures de pression intraoculaire à l’aide du Tono-Pen XL® et considéré à ce titre comme le manipulateur débutant.
2.4. MESURE DE LA PRESSION INTRAOCULAIRE

Avant chaque série de mesures, une anesthésie locale a été pratiquée sur les deux yeux de chaque chien à l’aide d’une instillation de chlorhydrate d’oxybuprocaïne à 0,4 % (Cébésine®). Une première goutte a été instillée à T0, puis une deuxième une minute plus tard, la première mesure ne se déroulant qu’à T = 2 minutes. Ce protocole permet d’obtenir une anesthésie cornéenne pendant cinquante cinq minutes après la première instillation (55). Cette manipulation a été réalisée chaque jour par une même personne, différente des expérimentateurs.

Les mesures ont été réalisées sur des animaux calmes et contenus de manière à n’exercer aucune pression sur les globes oculaires ou sur les veines jugulaires. Sur chaque chien, la PIO des deux yeux a été mesurée indépendamment (56), en commençant toujours par l’œil droit. Seules les mesures affichées par le Tono-Pen XL® avec un coefficient de variation de 5% ont été retenues, dans le cas contraire la mesure a été refaite jusqu’à être admise.

2.5. CALENDRIERS ET DEROULEMENT DES MANIPULATIONS

Une étude préliminaire a été réalisée sur deux des cinq chiens afin de déterminer si l’anesthésie locale était suffisamment longue pour permettre des mesures pendant presque soixante minutes et si l’utilisation de l’anesthésique local modifiait la valeur de la PIO au cours du temps. Les résultats de cette étude sont disponibles en annexe 1 et montrent des valeurs de pression exploitables pendant cinquante minutes après instillation. De plus le profil général de la courbe est stable, sans augmentation ou diminution générale. Ceci nous laisse penser que ni l’anesthésique local ni la répétition des mesures ne modifient la pression intraoculaire, contrairement aux conclusions d’études précédentes où l’oxybuprocaïne diminuait la PIO chez l’homme (57), et où les mesures répétées avec le TonoPen augmentaient la PIO (27).

L’étude s’est déroulée avec cinq chiens de race Beagle pendant quatre jours en juin 2006, et la prise de mesures a été faite chaque jour à la même heure en raison du rythme nycthéméral de la PIO (28). L’intervalle choisi entre deux mesures de pression sur un même œil était de dix minutes (26). Chaque jour, les manipulateurs ont mesuré deux fois la PIO des
yeux de chaque chien, et l’ordre de passage des chiens pour chaque opérateur a été différent entre la première série de mesures et la deuxième. Le calendrier des manipulations est consigné en annexe 2.

L’expérience n’a pas été conduite en aveugle mais chaque résultat, donné lors du double « beep » émis par l’appareil, a été validé par l’aide tenant le chien. En conséquence, les manipulateurs n’ont eu accès qu’à leurs propres résultats.

2.6. ANALYSE STATISTIQUE

Les données obtenues ont été traitées séparément et étudiées grâce au logiciel informatique SYSTAT (version 10.2, SPSS Inc., Chicago, IL, USA).

Le modèle linéaire suivant, dans lequel a été pris en compte l’éventualité d’un effet « jour » (noté J), d’un effet « chien » (noté C) et d’une interaction « chien-jour » (notée C*J), a été utilisé pour chaque opérateur, pour chaque œil et pour chaque mesure de pression intraoculaire :

\[ Y_{ijklm} = \mu + J_j + C_k + (C*J)_{jk} + \varepsilon_{ijklm} \]

Dans ce modèle, \( Y_{ijklm} \) est la l ième mesure sur l’œil m de l’animal k réalisé le jour j par l’opérateur i, \( \mu \) est la moyenne des valeurs obtenues et \( \varepsilon_{ijklm} \) l’erreur du modèle.

L’écart type de répétabilité a été calculé à partir de la variance du résidu du modèle noté \( \varepsilon_{ijklm} \) et l’écart type de reproductibilité à partir de la variance du résidu et de celle de l’effet jour.

Par la suite, l’éventualité d’une interaction entre le chien et l’opérateur a été déterminée par le modèle statistique linéaire suivant, dans lequel a été pris en compte un éventuel effet « jour » (noté J), un effet « chien » (noté C), un effet « opérateur » (noté OP), une interaction « chien-jour » (noté C*J) et une interaction « chien-opérateur » (noté C*OP) :

\[ Y_{ijklm} = \mu + OP_i + J_j + C_k + (C*J)_{jk} + (C*OP)_{ik} + \varepsilon_{ijklm} \]

Dans ce modèle, \( Y_{ijklm} \) est la l ième mesure sur l’œil m de l’animal k réalisé le jour j par l’opérateur i, \( \mu \) est la moyenne des valeurs obtenues et \( \varepsilon_{ijklm} \) l’erreur du modèle.
Enfin, l’étude d’un effet « œil » sur la mesure de la PIO a été réalisée à partir du modèle statistique linéaire suivant, dans lequel a été pris en compte un éventuel effet « jour » (noté J), un effet « chien » (noté C), un effet « œil » (noté OE), une interaction « chien-jour » (noté C*J) et une interaction « chien-œil » (noté C*OE) :

\[ Y_{ijklm} = \mu + J_j + C_k + OE_m + (C*J)_{jk} + (C*OE)_{km} + e_{ijklm} \]

Dans ce modèle, \( Y_{ijklm} \) est la ième mesure sur l’œil m de l’animal k réalisé le jour j par l’opérateur i, \( \mu \) est la moyenne des valeurs obtenues et \( e_{ijklm} \) l’erreur du modèle.

Dans ces trois modèles, l’opérateur AR (à savoir Alain Regnier) était considéré comme l’opérateur de référence pour déterminer la possibilité de remplacer cet opérateur par un autre, que ce soit pour une mesure isolée de pression intraoculaire ou pour un suivi thérapeutique. Lors d’un effet « opérateur », la comparaison entre l’opérateur de référence et les autres opérateurs a été faite par un test de Dunnett sous SYSTAT. Nous avons considéré l’hypothèse significative lorsque P< 0.05.
3. RESULTATS

3.1. MESURES DE PRESSION INTRAOCULAIRE

L’ensemble des mesures effectuées au cours des quatre jours d’expérience est consigné dans les annexes 3 et 4. Les valeurs moyennes (± écart-type) sont présentées dans le tableau 5 pour chaque opérateur.

3.2. MESURES DE REPETABILITE ET DE REPRODUCTIBILITE

Les écart-types et les coefficients de variation de répétabilité et de reproductibilité, c’est à dire respectivement de variabilité intrajour et interjour, calculés à partir du premier modèle statistique, sont présentés dans le tableau 6 pour l’œil droit et dans le tableau 7 pour l’œil gauche. L’analyse statistique est disponible en annexe 5.

Concernant l’œil droit, les trois opérateurs ont des écart-types et des coefficients de variation proches. De plus les écarts entre les valeurs pour la répétabilité et celles pour la reproductibilité sont négligeables, il n’y a pas d’effet « jour ». Si on considère que la variabilité biologique est nulle grâce au protocole, cette imprécision ne peut s’expliquer que par la variabilité de l’opérateur additionnée à celle de l’appareil.

*Tableau 5: valeurs moyennes (± écart-type) (en mmHg) de la pression intraoculaire mesurée chez cinq chiens Beagle*

<table>
<thead>
<tr>
<th>opérateurs</th>
<th>AR</th>
<th>TD</th>
<th>TV</th>
</tr>
</thead>
</table>
Tableau 6: écart-types (mmHg) et coefficients de variation (%) de la variabilité intraopérateur intrajour (rététabilité) et interjour (reproductibilité) pour la mesure de la pression intraoculaire sur l’œil droit chez cinq chiens Beagle

<table>
<thead>
<tr>
<th></th>
<th>OD variabilité</th>
<th>opérateurs</th>
<th>AR</th>
<th>TD</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>écart-type intrajour</td>
<td>3.50</td>
<td>3.50</td>
<td>3.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV intrajour</td>
<td>16.39</td>
<td>16.28</td>
<td>15.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>écart-type interjour</td>
<td>3.63</td>
<td>3.66</td>
<td>3.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV interjour</td>
<td>16.98</td>
<td>17.00</td>
<td>16.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 7: écart-types (mmHg) et coefficients de variation (%) de la variabilité intraopérateur intrajour (rététabilité) et interjour (reproductibilité) pour la mesure de la pression intraoculaire sur l’œil gauche chez cinq chiens Beagle

<table>
<thead>
<tr>
<th></th>
<th>OG variabilité</th>
<th>opérateurs</th>
<th>AR</th>
<th>TD</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>écart-type intrajour</td>
<td>3.37</td>
<td>2.59</td>
<td>3.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV intrajour</td>
<td>15.63</td>
<td>12.91</td>
<td>16.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>écart-type interjour</td>
<td>3.45</td>
<td>3.25</td>
<td>3.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV interjour</td>
<td>15.99</td>
<td>16.21</td>
<td>19.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pour l’œil gauche, un effet « jour » significatif a été mis en évidence pour les opérateurs TD (P=0.003) et TV (P=0.007). Ainsi une différence importante autant sur les écart-types que sur les coefficients de variation intra- et interjour est notée pour ces opérateurs, alors que les valeurs sont stables pour l’opérateur de référence AR. Nous reviendrons plus en détail sur la signification de cet effet dans la discussion.
3.3. EFFET DE L’EXPERIENCE DE L’OPERATEUR

Afin d’étudier la possibilité de remplacer l’opérateur de référence, les différences entre les mesures obtenues par chaque opérateur et celles de l’opérateur de référence sont représentées dans les figures 2 et 3, respectivement pour l’opérateur TD et l’opérateur TV. Leur observation montre une plus grande dispersion des valeurs chez l’opérateur TV, le moins expérimenté.

L’exploitation du deuxième modèle statistique montre un effet « opérateur » significatif sur l’œil droit (P=0.048) et sur l’œil gauche (P=0.005). A l’aide du test de Dunnett comparant toutes les mesures une à une entre chaque opérateur et l’opérateur de référence, seule la différence sur l’œil droit entre l’opérateur débutant (TV) et l’opérateur de référence (AR) est significative (P=0.048). Concernant l’œil gauche, les deux opérateurs (TD et TV) ont des mesures significativement différentes de celles de l’opérateur de référence (P=0.036 pour TD et P=0.003 pour TV). L’analyse statistique est disponible en annexe 6.

Aux vues des résultats de l’étude, les écarts-types et les coefficients de variation obtenus par l’opérateur de référence (AR) sont les plus constants, que ce soit entre l’œil droit et l’œil gauche ou entre les valeurs intra- et interjour. Si nous nous intéressons uniquement à l’œil droit, l’opérateur de référence (AR) obtient les écarts-types les plus bas, pour la répétabilité comme pour la reproductibilité, alors que l’opérateur le moins expérimenté (TV) obtient les meilleurs coefficients de variation. Cependant la moyenne des mesures de chacun de ces deux opérateurs étant très différente (21,375 ± 3,691 mmHg pour AR et 23,100 ± 3,768 mmHg pour TV), la surestimation de la PIO par l’opérateur TV explique ces résultats et met à jour le défaillance des coefficients de variation. Au contraire, cet opérateur obtient les écarts-types les plus élevés pour la répétabilité et pour la reproductibilité. Les résultats obtenus par l’opérateur TD sur l’œil droit sont voisins de ceux de l’opérateur de référence.
Figure 2 : différence par rapport à la moyenne de la pression intraoculaire (en mmHg) mesurée par l'opérateur TD et l'opérateur de référence AR, selon la méthode de Bland-Altman

Figure 3 : différence par rapport à la moyenne de la pression intraoculaire (en mmHg) mesurée par l'opérateur TV et l'opérateur de référence AR, selon la méthode de Bland-Altman
Concernant l’œil gauche, les résultats obtenus par l’opérateur de référence (AR) sont sensiblement identiques à ceux obtenus pour l’œil droit, qu’il s’agisse des écarts-types ou des coefficients de variation pour la répétabilité ou pour la reproductibilité. Cet opérateur (AR) est donc constant dans la mesure de la PIO et l’effet « œil » est négligeable. Cependant, l’opérateur de référence n’obtient pas les écarts-types et les coefficients de variation les plus bas sur cet œil, excepté pour le coefficient de variation de reproductibilité ; l’opérateur TD, le deuxième plus expérimenté, obtient les meilleurs résultats. A l’opposé, l’écart-type de reproductibilité et les coefficients de variation de répétabilité et de reproductibilité de l’opérateur débutant (TV) demeurent les plus importants. De plus ce dernier sous-estime de manière importante la PIO sur l’œil gauche par rapport à l’opérateur de référence (21,575 ± 3,145 mmHg pour la moyenne de l’opérateur AR contre 19,500 ± 3,412 mmHg pour TV) ; l’effet « œil » est significatif (P<0.001) pour l’opérateur TV. De même l’opérateur TD, le deuxième plus expérimenté, sous-estime la PIO sur l’œil gauche par rapport à l’opérateur de référence (AR) alors qu’ils étaient tous les deux très proche sur l’œil droit, l’effet « œil » est là aussi significatif (P=0.027). Le modèle et les résultats statistiques concernant cet effet sont disponibles en annexe 7, nous reviendrons sur sa signification dans la discussion.

Du fait de la présence de cet effet « œil », nous nous sommes intéressés au couple de mesures (œil droit - œil gauche) lors de chaque passage d’un opérateur avec un chien et aux écarts de valeurs obtenues. En comparant ces différences (OD/OG) pour chaque mesure de chaque opérateur grâce à un test de Dunnett, seule la différence entre l’opérateur débutant (TV) et l’opérateur de référence est significative (P=0.02). Ainsi, lorsque l’écart moyen (± écart-type) entre l’œil droit et l’œil gauche est de 2.45 ±2.18 mmHg pour l’opérateur de référence, ce dernier s’élève à 3.95 ±2.97 mmHg pour l’opérateur débutant.

Enfin, les valeurs extrêmes mesurées par chaque opérateur sur chaque œil de chaque chien sur les quatre jours de mesures ainsi que l’écart entre ces valeurs sont reportés dans le tableau 8. Les résultats sont similaires pour l’opérateur de référence et l’opérateur le deuxième plus expérimenté (TD) puisque l’opérateur AR obtient l’écart le plus bas dans cinq cas sur les dix yeux mesurés (dont deux fois ex aequo) et l’écart le plus élevé dans trois cas (dont deux fois ex aequo), alors que l’opérateur TD obtient l’écart le plus bas dans cinq cas sur dix (dont une seule fois ex aequo, avec l’opérateur AR) et l’écart le plus élevé dans deux cas. A l’opposé, l’opérateur débutant (TV) n’obtient l’écart le plus bas que dans un seul cas (ex aequo avec l’opérateur AR) et l’écart le plus élevé dans sept cas sur dix (ex aequo deux fois). L’écart moyen pour chaque opérateur est 8.8, 9.4 et 10.9 mmHg, respectivement pour
les opérateurs AR, TD et TV, dans l’ordre d’expérience. De plus, un effet « chien » est visible, les écarts de pression sur certains animaux étant plus importants que sur d’autres. Par exemple, les écarts sur le chien 1 vont de 5 à 9 sur l’œil droit et de 3 à 6 sur l’œil gauche, tout opérateur confondu, alors que sur le chien 3, ces écarts vont de 10 à 17 sur l’œil droit et de 11 à 17 sur l’œil gauche.

Tableau 8: écarts (en mmHg) entre les valeurs extrêmes mesurées par chaque opérateur sur chaque chien de l’étude

<table>
<thead>
<tr>
<th>Chien</th>
<th>Œil mesuré</th>
<th>Valeurs extrêmes</th>
<th>AR</th>
<th>TD</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN1</td>
<td>OD</td>
<td>Min 21</td>
<td>21</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 29</td>
<td>26</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>Min 20</td>
<td>19</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 26</td>
<td>22</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>CN2</td>
<td>OD</td>
<td>Min 14</td>
<td>15</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 23</td>
<td>29</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>Min 15</td>
<td>13</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 26</td>
<td>24</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>CN3</td>
<td>OD</td>
<td>Min 17</td>
<td>17</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 27</td>
<td>29</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>Min 16</td>
<td>14</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 27</td>
<td>31</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>CN4</td>
<td>OD</td>
<td>Min 19</td>
<td>15</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 26</td>
<td>23</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>Min 19</td>
<td>17</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 28</td>
<td>23</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>CN5</td>
<td>OD</td>
<td>Min 19</td>
<td>18</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 30</td>
<td>28</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>Min 18</td>
<td>18</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 24</td>
<td>26</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
4. DISCUSSION

L’objectif de notre étude était de déterminer les propriétés métrologiques de la tonométrie par aplanissement à l’aide du Tono-Pen XL®, en répétant les mesures de pression intraoculaire sur cinq chiens. La présence de trois opérateurs d’expérience différente nous a permis d’étudier l’effet opérateur de la technique.

Nos résultats montrent que la variabilité intraopérateur de la méthode est correcte pour la répétabilité et bonne pour la reproductibilité. Nous ne pouvons qualiﬁer la répétabilité intraopérateur que de correcte, car pour l’opérateur de référence, les coefficients de variation sont de 16.39 % et de 15.63 % respectivement pour l’œil droit et l’œil gauche. Ces coefficients de variation sont acceptables mais tout de même important. Il s’agit de valeurs sensiblement identiques à celles obtenues par Goldblum et coll. (51) sur le rat mais bien supérieures à celle de l’étude d’Andrada Marquez et coll. (41) sur l’homme dans laquelle des coefficients de variation de répétabilité de 8.3 % et de 9.5% ont été respectivement identifiés pour un médecin généraliste et pour un ophtalmologiste. De plus le coefﬁcient de variation de la répétabilité pour le tonomètre à rebond Icare® a été déterminé par Goldblum et coll. (51) comme bien inférieur à nos valeurs (4.6 %). Cependant la reproductibilité de notre méthode peut être jugée bonne car l’écart entre la reproductibilité et la répétabilité est négligeable. Ce qui veut dire que la variabilité reste la même d’un jour à l’autre lorsqu’on ne change pas d’opérateurs et que les conditions permettent de minimiser la variation biologique. Ce résultat indique que la méthode est acceptable pour effectuer des suivis longitudinaux. Le tableau 9 récapitule les valeurs de coefﬁcients de variation obtenues dans les études précédentes chez l’homme et le rat à l’aide de différents tonomètres.
**Tableau 9 : coefficients de variation (%) de répétabilité et de reproductibilité obtenus lors de plusieurs études chez le chien, l’homme ou le rat**

<table>
<thead>
<tr>
<th>Etudes</th>
<th>répétabilité</th>
<th>reproductibilité</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tono-Pen (CV)</td>
<td>Perkins (CV)</td>
</tr>
<tr>
<td>Notre étude (opérateur de référence)</td>
<td>16 %</td>
<td></td>
</tr>
<tr>
<td>Marquez et coll. 2003 (41) *</td>
<td>9 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Marquez et coll. 2003 * (ophtalmologue)</td>
<td>9.6 %</td>
<td></td>
</tr>
<tr>
<td>Marquez et coll. 2003 * (médecin général)</td>
<td>8.3 %</td>
<td></td>
</tr>
<tr>
<td>Aakre et coll. 2003 (58) $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khamees et coll. 2001 (52) **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldblum et coll. 2002 (51) #*</td>
<td>14.5 %</td>
<td>4.6 %</td>
</tr>
</tbody>
</table>

* Tono-Pen XL (Mentor, Norwell, MA, USA)
** Tono-Pen (Oculab, Glendale, CA, USA)
$ Etude réalisée chez l’homme
# Etude réalisée chez le rat
Les coefficients de variation obtenus dans notre étude sont acceptables mais tout de même important. En effet, dans d’autres domaines de la médecine vétérinaire, les coefficients de variation de paramètres d’intérêt sont généralement bien inférieurs à nos résultats. Par exemple, Nicolas Athanassiadis, dans sa thèse de doctorat vétérinaire en 2003 (59), a déterminé les coefficients de variation de paramètres d’intérêt en suivi échocardiographique. Les valeurs obtenues concernant la répétabilité et la reproductibilité sont présentées dans le tableau 10.

**Tableau 10 : coefficients de variation (%) de répétabilité et de reproductibilité pour des paramètres d’intérêt en suivi échocardiographique obtenus par Athanassiadis N. chez des chiens vigiles**

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>CV de répétabilité (%)</th>
<th>CV de reproductibilité (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIV d (mm)</td>
<td>11.2</td>
<td>4.5</td>
</tr>
<tr>
<td>VG d (mm)</td>
<td>5.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PP d (mm)</td>
<td>10.9</td>
<td>9.4</td>
</tr>
<tr>
<td>AO (mm)</td>
<td>5.2</td>
<td>6.0</td>
</tr>
<tr>
<td>AG (mm)</td>
<td>7.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Les mesures moyennes obtenues par Alain Régnier, l’opérateur de référence, sont en accord avec les valeurs trouvées dans la littérature. Le tableau 11 présente les moyennes des mesures de PIO obtenues dans différentes études chez le chien, le chat, l’homme ou encore le cheval. La moyenne de notre opérateur de référence est supérieure aux autres valeurs mais tout de même proche de celle de Gelatt et coll.(31), l’étude avec la plus grande population canine. De plus, l’écart-type obtenu est parmi les plus bas, ce qui nous permet d’avancer que les écart-types de répétabilité et de reproductibilité de cet opérateur, sensiblement du même ordre, sont acceptables.
Tableau 11: moyennes des mesures de pression intraoculaire (mmHg ±écart-type) obtenues dans différentes études chez plusieurs espèces

<table>
<thead>
<tr>
<th>Études</th>
<th>espèce</th>
<th>moyenne (±écart-type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre étude (opérateur de référence)</td>
<td>chien</td>
<td>21.475 ±3.409</td>
</tr>
<tr>
<td>Leiva et coll. 2006 (OD)*</td>
<td>chien</td>
<td>11.25 ±3.50</td>
</tr>
<tr>
<td>Leiva et coll. 2006 (OG)*</td>
<td>chien</td>
<td>10.87 ±3.40</td>
</tr>
<tr>
<td>Knollinger et coll. 2005 ***</td>
<td>chien</td>
<td>12.8 ±4.7</td>
</tr>
<tr>
<td>Mughannam et coll. 2004 (OD)*</td>
<td>chien</td>
<td>15.2 ±2.3</td>
</tr>
<tr>
<td>Mughannam et coll. 2004 (OG)*</td>
<td>chien</td>
<td>14.5 ±2.4</td>
</tr>
<tr>
<td>Gelatt et coll. 1995 *</td>
<td>chien</td>
<td>19.2 ±5.9</td>
</tr>
<tr>
<td>Miller et coll. 1991 **</td>
<td>chien</td>
<td>16.7 ±4.0</td>
</tr>
<tr>
<td>Miller et coll. 1991 **</td>
<td>chat</td>
<td>19.7 ±5.6</td>
</tr>
<tr>
<td>Kroll et coll. 2001 *</td>
<td>chat</td>
<td>12.3 ±4.0</td>
</tr>
<tr>
<td>Knollinger et coll. 2005 ***</td>
<td>cheval</td>
<td>21.0 ±5.9</td>
</tr>
<tr>
<td>Tonnu et coll. 2005 *</td>
<td>homme</td>
<td>16.6 ±4.4</td>
</tr>
<tr>
<td>Andrada Marquez et coll. 2003 *</td>
<td>homme</td>
<td>15.34 ±2.73</td>
</tr>
<tr>
<td>(ophtalmologue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrada Marquez et coll. 2003 *</td>
<td>homme</td>
<td>15.75 ±3.52</td>
</tr>
<tr>
<td>(médecin généraliste)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Tono-Pen XL® (Mentor, Norwell, MA, USA)
** Tono-Pen® (Oculab, Glendale, CA, USA)
*** Tono-Pen Vet (Medtronic, Jacksonville, Fla, USA)
Les écart-types de l’opérateur de référence sont d’environ 3.50 mmHg pour l’œil droit comme pour le gauche. Ceux de l’opérateur le deuxième plus expérimenté sont inférieurs pour l’œil gauche. Mais nous ne les prenons pas encore en compte, car le fait qu’il y ait une assez grande différence entre les résultats des deux yeux révèle plutôt une anomalie concernant la technique qu’une réelle aptitude à mesurer l’œil gauche. En nous intéressant aux écart-types de l’opérateur de référence, nous constatons que ceux-ci sont corrects mais tout de même important. En effet, lors d’une utilisation pour un essai clinique, il faut que le principe actif testé soit responsable d’une évolution de la PIO significativement différente de cet écart-type. Dans le cas contraire, il nous sera impossible de conclure à un effet pharmacologique. Si cet écart-type est jugé trop important, une solution est de travailler avec des moyennes de mesures. A chaque examen, il nous faudra réaliser deux ou trois mesures puis utiliser la moyenne de ces mesures. L’écart-type qui était avant SD(repet)/√n où n est le nombre de mesures réalisées pour obtenir la moyenne. Par exemple, si notre opérateur de référence effectue deux mesures puis utilise la moyenne, son écart-type qui était de 3.50 mmHg est maintenant de 2.47 mmHg, ou de 2.02 mmHg s’il réalise trois mesures. Cette formule est valable pour tous les opérateurs, pour la répétabilité comme pour la reproductibilité.


Cette anomalie peut être due au manque d’expérience, surtout aux vues des résultats de l’opérateur débutant dont les mesures sont plus éloignées que celles de l’opérateur plus expérimenté. Mais ils ont tous deux la même tendance pour sous-estimer l’œil gauche et ils sont également tous deux droitiers, alors que l’opérateur AR est gaucher. La contention des animaux ayant été faite à l’identique pour tous les opérateurs, cette anomalie pourrait provenir de la position de l’opérateur par rapport à l’animal, à l’origine d’une difficulté plus importante pour un droitié de mesurer l’œil gauche ; alors que sur l’œil droit, l’opérateur TD a moins de
difficulté et arrive à compenser son manque d’expérience par rapport à l’opérateur de référence, qui lui est stable sur les deux yeux. Il pourrait être intéressant de refaire la même étude mais cette fois-ci avec des droitiers et des gauchers d’expérience moyenne, en regardant si les droitiers surestiment l’œil droit et sous-estiment l’œil gauche, comme c’est le cas ici avec l’opérateur TV, et si les gauchers font l’inverse.

Par ailleurs, la reproductibilité sur l’œil gauche des opérateurs TD et TV est moins bonne que leur répétabilité. Ceci s’explique par l’effet « jour » significatif dans le modèle statistique, ils sont tous les deux précis chaque jour mais d’un jour à l’autre les valeurs ne sont pas les mêmes, provoquant ainsi une plus grande variabilité interjourn.

Ces différences importantes entre les valeurs recueillies sur chaque œil montrent la nécessité au cours des études pharmaco logiques de randomiser l’œil traité par rapport à l’œil témoin. Par exemple, si l’œil traité est toujours le droit et l’œil témoin le gauche et si l’opérateur a tendance à surestimer l’œil droit par rapport au gauche, l’effet d’un médicamenteux hypotenseur sera peut-être jugé non significatif alors qu’il l’aurait été avec un autre opérateur, et peut-être encore plus si ce dernier sous-estime l’œil droit. Il est donc indispensable de randomiser l’œil traité afin d’éliminer ce biais. Pour la même raison, il faut éviter de changer d’opérateur en cours de suivi.

De plus, il est admis dans la littérature que la différence entre deux yeux sains n’excède pas 5 mmHg. Or nous venons de voir que l’écart-type de l’opérateur de référence était de 3.50 mmHg. Si nous considérons la PIO comme une variable à distribution normale, cet opérateur ne peut donc pas distinguer avec certitude un écart de pression inférieur à deux fois la valeur de l’écart-type, c’est-à-dire deux yeux ayant des pressions voisines de moins de 7 mmHg. Il est donc conseillé de prendre un écart bien supérieur, comme c’est le cas dans l’étude menée par Kroll et coll. (33) sur des chats âgés. La PIO est considérée comme anormale si la différence entre les deux yeux est supérieure ou égale à 12 mmHg, c’est-à-dire trois fois l’écart-type de la moyenne mesurée. Cela peut s’avérer pratique pour diagnostiquer un glaucome, mais lorsque la moyenne de toutes les mesures de PIO est de 12.4 ±4.0 mmHg, cela rend plus difficile le diagnostic de l’hypotension oculaire. Si nous utilisons ces valeurs dans notre étude, un chien avec l’opérateur TD et un autre avec l’opérateur TV ont une différence entre les deux yeux supérieure à 10 mmHg. Si nous utilisons la norme de 5 mmHg, nous trouverions comme proportion de chiens anormaux parmi les chiens sains mesurés : 12.5 %, 7.5 % et 30 % respectivement pour les opérateurs AR, TD et TV. De même si nous nous intéressons à la valeur dite diagnostique du glaucome chez le chien, à savoir une PIO supérieure à 25 mmHg : on trouve alors 12.5 %, 7.5 % et 13.75 % de chiens
glaucomateux parmi ces chiens sains, respectivement pour les opérateurs AR, TD et TV. L’étude des valeurs maximales recueillies par chaque opérateur sur chaque chien nous a montré la présence d’un effet « Chien », c'est-à-dire que pour certains chiens l’écart maximal entre les valeurs est réduit pour tous les opérateurs alors que pour d’autres cet écart est beaucoup plus important, et ce pour tous les opérateurs. Certains chiens semblent augmenter la variabilité des opérateurs. Il serait alors plus judicieux de choisir comme critère d’exclusion la variabilité de la mesure de PIO sur un chien plutôt que l’écart entre la valeur de l’œil droit et celle de l’œil gauche. Cela permettrait peut-être de sélectionner des chiens faciles à mesurer et sur lesquels les opérateurs auraient de meilleurs écart-types, l’étude en serait alors meilleure.
CONCLUSION

La tonométrie par aplanissement est une technique à la fois simple, rapide et utile pour le dépistage ou le suivi des animaux glaucomateux. Bien que la technique soit simple, l’expérience et la dextérité du manipulateur influence grandement la variabilité des valeurs obtenues. Cette étude visait à déterminer les propriétés métrologiques de la méthode, par le biais de mesures répétées sur des chiens pendant plusieurs jours et effectuées par trois opérateurs de niveau d’expérience différent.

Aux vues des résultats, il apparaît que sous réserve d’une expérience suffisante, la technique présente une répétabilité correcte et une bonne reproductibilité, puisque cette dernière est très proche de la répétabilité. Cette bonne reproductibilité confère à la méthode un intérêt en terme de suivi longitudinal. Cependant la répétabilité indique que cette technique n’est pas adaptée à la réalisation d’essais cliniques car l’effet pharmacologique recherché doit alors être supérieur à l’écart-type de répétabilité pour être considéré comme significatif.

Les différences constatées entre les mesures des opérateurs et celles de l’opérateur de référence, et les écarts observés en fonction de l’expérience, indiquent clairement que le suivi ne doit se faire que par le même opérateur. Si cela n’est pas aisé en pratique, le mieux est alors de réaliser plusieurs mesures répétées et de considérer la moyenne. De plus, les différences enregistrées entre les mesures de l’œil droit et celles de l’œil gauche par les opérateurs les moins expérimentés montrent l’intérêt de la randomisation de l’œil traité pour les études pharmacologiques.

Enfin il est important de prendre en compte d’une part le niveau d’expérience du manipulateur avec sa propre variabilité et d’autre part la variabilité intrinsèque de la pression intraoculaire avant d’interpréter toute modification de ce paramètre comme étant anormale.
AGREMENT ADMINISTRATIF

Je soussigné, A. MILON, Directeur de l'École Nationale Vétérinaire de Toulouse, certifie que

Mr Thomas VERBOIS

a été admis(e) sur concours en : 2002

a obtenu son certificat de fin de scolarité le : 12 Juillet 2007

n'a plus aucun stage, ni enseignement optionnel à valider.

AGREMENT SCIENTIFIQUE

Je soussigné, Alain REGNIER, Professeur de l'École Nationale Vétérinaire de Toulouse,

autorise la soutenance de la thèse de :

Mr Thomas VERBOIS

intitulée :

Répétabilité et reproductibilité de la mesure de la pression intraoculaire avec le Tonopen® chez le chien

Le Professeur

de l'École Nationale Vétérinaire de Toulouse

Professeur Alain REGNIER

Vu :

Le Directeur

de l'École Nationale Vétérinaire de Toulouse

Professeur Alain MILON

Vu :

Le Président de la thèse :

Professeur François MALECAZE

Vu le : 14 DEC. 2007

Le Président

de l'Université Paul Sabatier

Professeur Jean-François SAUTEREAU


38. Pauli AM, Bentley E, Diehl KA, Miller PE. Effects of the application of neck pressure by a collar or harness on intraocular pressure in dogs. *J Am Anim Hosp Assoc* 2006; 42: 207-211.


ANNEXES
Annexe 1:
Etude pilote: variation de la PIO chez deux chiens sains de race Beagle après instillation d’un
anesthésique local

<table>
<thead>
<tr>
<th></th>
<th>T-2 et T-1</th>
<th>CN1</th>
<th>CN2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OD</td>
<td>OG</td>
<td>OD</td>
</tr>
<tr>
<td>T0</td>
<td>instillation</td>
<td>12</td>
<td>instillation</td>
</tr>
<tr>
<td>T10</td>
<td>11</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>T20</td>
<td>12</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>T30</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>T40</td>
<td>10</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>T50</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>T60</td>
<td>17</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>T70</td>
<td>13</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

* œil sale nettoyé avant la manipulation mais pouvant entrainer un biais quelconque.
**Annexe 2 :** ordre de passage des cinq chiens pour les trois opérateurs. Cet ordre est répété pendant les quatre jours consécutifs.

<table>
<thead>
<tr>
<th>Temps (min)</th>
<th>Manipulation</th>
<th>Mesure OD</th>
<th>OD</th>
<th>OG</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>I sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>E1 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>E2 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>E3 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>E1 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T10</td>
<td>E2 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td>E3 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>E1 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T16</td>
<td>E2 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T18</td>
<td>E3 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>E1 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>E2 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>E3 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26</td>
<td>E1 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T28</td>
<td>E2 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>E3 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td>E1 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T34</td>
<td>E3 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T36</td>
<td>E2 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T38</td>
<td>E1 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T40</td>
<td>E2 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td>E3 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T44</td>
<td>E2 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T46</td>
<td>E1 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T48</td>
<td>E3 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T50</td>
<td>E1 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T52</td>
<td>E2 sur CN-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T54</td>
<td>E1 sur CN-D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T56</td>
<td>E3 sur CN-E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T58</td>
<td>E2 sur CN-F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T60</td>
<td>E3 sur CN-H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Date:*

**E1:** Alain REGNIER  
**E2:** Thomas DULAURENT  
**E3:** Thomas VERBOIS  
**I:** Jean-Yves DOUET
**Annexe 3:** mesures de pression intraoculaire obtenues par les trois opérateurs sur cinq chiens de race Beagle (jours 1 et 2)

<table>
<thead>
<tr>
<th>Expérimentateur</th>
<th>Chien testé</th>
<th>Œil mesuré</th>
<th>J1</th>
<th>J2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>CN1</td>
<td>OD</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>CN2</td>
<td>OD</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CN3</td>
<td>OD</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>27</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CN4</td>
<td>OD</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>CN5</td>
<td>OD</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>E2</td>
<td>CN1</td>
<td>OD</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>CN2</td>
<td>OD</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>CN3</td>
<td>OD</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>CN4</td>
<td>OD</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CN5</td>
<td>OD</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>E3</td>
<td>CN1</td>
<td>OD</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>CN2</td>
<td>OD</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>CN3</td>
<td>OD</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>CN4</td>
<td>OD</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>CN5</td>
<td>OD</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>
Annexe 4: mesures de pression intraoculaire obtenues par les trois opérateurs sur cinq chiens de race Beagle (jours 3 et 4)

<table>
<thead>
<tr>
<th>Expérimentateur</th>
<th>Chien testé</th>
<th>Œil mesuré</th>
<th>J3</th>
<th>J4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1</td>
<td>OD</td>
<td>22</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>24</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>CN2</td>
<td>OD</td>
<td>15</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>15</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>CN3</td>
<td>OD</td>
<td>19</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>23</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>CN4</td>
<td>OD</td>
<td>26</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>20</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>CN5</td>
<td>OD</td>
<td>20</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>CN1</td>
<td>OD</td>
<td>26</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>CN2</td>
<td>OD</td>
<td>22</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>CN3</td>
<td>OD</td>
<td>20</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>CN4</td>
<td>OD</td>
<td>22</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>23</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>CN5</td>
<td>OD</td>
<td>19</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>21</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>CN1</td>
<td>OD</td>
<td>22</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>CN2</td>
<td>OD</td>
<td>21</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>14</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>CN3</td>
<td>OD</td>
<td>17</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>16</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>CN4</td>
<td>OD</td>
<td>18</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>CN5</td>
<td>OD</td>
<td>24</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>OG</td>
<td>18</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>
Annexe 5:
D’après le premier modèle statistique, pour chaque opérateur successivement sur l’œil droit puis sur l’œil gauche, SYSTAT donne les resultants suivants:

The following results are for:
  OPERATEUR$ = AR
Data for the following results were selected according to:
  (GEIL$ = "OD")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
  JOURS$ (4 levels)
    1, 2, 3, 4
  CHIENS$ (5 levels)
    1, 2, 3, 4, 5

Dep Var: PIO  N: 40  Multiple R: 0.733  Squared multiple R: 0.538

Analysis of Variance

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum-of-Square</th>
<th>Mean-Square</th>
<th>F-rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOU</td>
<td>6</td>
<td>21.092</td>
<td></td>
</tr>
<tr>
<td>CHIE</td>
<td>14</td>
<td>35.188</td>
<td></td>
</tr>
<tr>
<td>JOURS$ CHIE</td>
<td>8</td>
<td>6.821</td>
<td></td>
</tr>
<tr>
<td>Err</td>
<td>24</td>
<td>12.275</td>
<td></td>
</tr>
</tbody>
</table>

Durbin-Watson D Statistic  2.974
First Order Autocorrelation -0.513
The following results are for:
OPERATEUR$ = TD
Data for the following results were selected according to:
(OEIL$= "OD")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
JOUR$ (4 levels)
1, 2, 3, 4
CHIEN$ (5 levels)
1, 2, 3, 4, 5

Dep Var: PIO N: 40 Multiple R: 0.681 Squared multiple R: 0.464

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>F-rat</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUC</td>
<td>70.675</td>
<td>23.558</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>CHIE</td>
<td>39.850</td>
<td>9.963</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>JOUR$</td>
<td>101.950</td>
<td>8.496</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>Err</td>
<td>245.500</td>
<td>12.275</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** WARNING ***
Case 111 is an outlier (Studentized Residual = 2.808)
Case 115 is an outlier (Studentized Residual = 2.808)

Durbin-Watson D Statistic 3.094
First Order Autocorrelation -0.548

The following results are for:
OPERATEUR$ = TV
Data for the following results were selected according to:
(OEIL$= "OD")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
JOUR$ (4 levels)
1, 2, 3, 4
CHIEN$ (5 levels)
1, 2, 3, 4, 5

Dep Var: PIO N: 40 Multiple R: 0.731 Squared multiple R: 0.534

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>F-rat</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUC</td>
<td>98.400</td>
<td>32.800</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>CHIE</td>
<td>52.600</td>
<td>13.150</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>JOUR$</td>
<td>144.600</td>
<td>12.050</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>Err</td>
<td>258.000</td>
<td>12.900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** WARNING ***
Case 197 is an outlier (Studentized Residual = 3.042)
Case 199 is an outlier (Studentized Residual = -3.042)

Durbin-Watson D Statistic 2.687
First Order Autocorrelation -0.375
The following results are for:
OPERATEUR = AR
Data for the following results were selected according to:
(OEIL$ = "OG")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
JOUR$ (4 levels)
1, 2, 3, 4
CHIEN$ (5 levels)
1, 2, 3, 4, 5

Dep Var: PIO  N: 40  Multiple R: 0.641  Squared multiple R: 0.410

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Square</th>
<th>Mean-Square</th>
<th>F-rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>5</td>
<td>16.825</td>
<td>(</td>
</tr>
<tr>
<td>CH</td>
<td>9</td>
<td>14.913</td>
<td>(</td>
</tr>
<tr>
<td>JOUR$*CHIEN$</td>
<td>4</td>
<td>4.012</td>
<td>(</td>
</tr>
<tr>
<td>Residuals</td>
<td>22</td>
<td>11.375</td>
<td></td>
</tr>
</tbody>
</table>

Durbin-Watson D Statistic 2.837
First Order Autocorrelation -0.446

The following results are for:
OPERATEUR = TD
Data for the following results were selected according to:
(OEIL$ = "OG")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
JOUR$ (4 levels)
1, 2, 3, 4
CHIEN$ (5 levels)
1, 2, 3, 4, 5

Dep Var: PIO  N: 40  Multiple R: 0.808  Squared multiple R: 0.653

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Square</th>
<th>Mean-Square</th>
<th>F-rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>13</td>
<td>45.167</td>
<td>(</td>
</tr>
<tr>
<td>CH</td>
<td>4</td>
<td>10.225</td>
<td>(</td>
</tr>
<tr>
<td>JOUR$*CHIEN$</td>
<td>7</td>
<td>6.292</td>
<td>(</td>
</tr>
<tr>
<td>Residuals</td>
<td>13</td>
<td>6.700</td>
<td></td>
</tr>
</tbody>
</table>

*** WARNING ***
Case 118 is an outlier (Studentized Residual = -3.363)
Case 120 is an outlier (Studentized Residual = 3.363)

Durbin-Watson D Statistic 3.104
First Order Autocorrelation -0.556
The following results are for:
OPERATEUR$ = TV
Data for the following results were selected according to:
(ŒIL$ = "OG")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
JOUR$(4$ levels)
1, 2, 3, 4
CHIEN$(5$ levels)
1, 2, 3, 4, 5

Dep Var: PIO  N: 40  Multiple R: 0.752  Squared multiple R: 0.566

Analysis of Variance

<table>
<thead>
<tr>
<th></th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>F-rat</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>161.400</td>
<td>53.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.250</td>
<td>4.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR$^*</td>
<td>79.350</td>
<td>6.613</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>197.000</td>
<td>9.850</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durbin-Watson D Statistic  2.835
First Order Autocorrelation -0.430
Annexe 6:
Etude des interactions “Chien*Opérateur” sur l’œil droit puis sur l’œil gauche, d’après le deuxième modèle statistique, SYSTAT donne les résultats suivants:

Data for the following results were selected according to:
(ŒIL$= "OD")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
CHIEN$ (5 levels)
1, 2, 3, 4, 5
JOUR$ (4 levels)
1, 2, 3, 4
OPERATEUR$ (3 levels)
AR, TD, TV

Dep Var: PIO  N: 120  Multiple R: 0.592  Squared multiple R: 0.350

<table>
<thead>
<tr>
<th></th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>P-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>133.500</td>
<td>33.375</td>
<td>2.861</td>
</tr>
<tr>
<td>OPE</td>
<td>182.200</td>
<td>60.733</td>
<td>5.206</td>
</tr>
<tr>
<td>JOUR$</td>
<td>73.050</td>
<td>36.525</td>
<td>3.131</td>
</tr>
<tr>
<td>CHIEN$*OPE</td>
<td>77.633</td>
<td>6.469</td>
<td>0.555</td>
</tr>
<tr>
<td></td>
<td>99.700</td>
<td>12.463</td>
<td>1.068</td>
</tr>
<tr>
<td></td>
<td>1049.917</td>
<td>11.666</td>
<td></td>
</tr>
</tbody>
</table>

Data for the following results were selected according to:
(ŒIL$= "OG")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
CHIEN$ (5 levels)
1, 2, 3, 4, 5
JOUR$ (4 levels)
1, 2, 3, 4
OPERATEUR$ (3 levels)
AR, TD, TV

Dep Var: PIO  N: 120  Multiple R: 0.662  Squared multiple R: 0.438

<table>
<thead>
<tr>
<th></th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>P-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>83.917</td>
<td>20.979</td>
<td>2.548</td>
</tr>
<tr>
<td>OPE</td>
<td>293.825</td>
<td>97.942</td>
<td>11.893</td>
</tr>
<tr>
<td>JOUR$</td>
<td>92.450</td>
<td>46.225</td>
<td>5.613</td>
</tr>
<tr>
<td>CHIEN$*OPE</td>
<td>73.883</td>
<td>6.157</td>
<td>0.748</td>
</tr>
<tr>
<td></td>
<td>32.883</td>
<td>4.110</td>
<td>0.499</td>
</tr>
<tr>
<td></td>
<td>741.167</td>
<td>8.235</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 7:
Etude d’un effet “Oeil” pour chaque opérateur, d’après le troisième modèle statistique, SYSTAT donne les résultats suivants :

Data for the following results were selected according to:
(OPERATEURS= "AR")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
CHIEN$ (5 levels)
  1, 2, 3, 4, 5
JOUR$ (4 levels)
  1, 2, 3, 4
OEIL$ (2 levels)
  OD, OG

Dep Var: PIO  N: 80  Multiple R: 0.658  Squared multiple R: 0.434

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>P-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEN$</td>
<td>187.200</td>
<td>46.800</td>
<td>4.950</td>
</tr>
<tr>
<td>JOUR$</td>
<td>99.450</td>
<td>33.150</td>
<td>3.506</td>
</tr>
<tr>
<td>OEIL$</td>
<td>0.800</td>
<td>0.800</td>
<td>0.085</td>
</tr>
<tr>
<td>JOUR$*CHIEN</td>
<td>97.300</td>
<td>8.108</td>
<td>0.858</td>
</tr>
<tr>
<td>CHIEN$*OEIL$</td>
<td>13.200</td>
<td>3.300</td>
<td>0.349</td>
</tr>
<tr>
<td>Error</td>
<td>520.000</td>
<td>9.455</td>
<td></td>
</tr>
</tbody>
</table>

Durbin-Watson D Statistic  2.053
First Order Autocorrelation -0.043

Data for the following results were selected according to:
(OPERATEURS= "TD")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
CHIEN$ (5 levels)
  1, 2, 3, 4, 5
JOUR$ (4 levels)
  1, 2, 3, 4
OEIL$ (2 levels)
  OD, OG

Dep Var: PIO  N: 80  Multiple R: 0.691  Squared multiple R: 0.478

Analysis of Variance
### Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>P-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEN$</td>
<td>69.200</td>
<td>17.300</td>
<td>2.054</td>
</tr>
<tr>
<td>JOURS</td>
<td>198.238</td>
<td>66.079</td>
<td>7.846</td>
</tr>
<tr>
<td>OEIL$</td>
<td>43.512</td>
<td>43.512</td>
<td>5.167</td>
</tr>
<tr>
<td>JOURS*CHIEN$</td>
<td>101.700</td>
<td>8.475</td>
<td>1.006</td>
</tr>
<tr>
<td>CHIEN$*OEIL$</td>
<td>11.550</td>
<td>2.888</td>
<td>0.343</td>
</tr>
<tr>
<td>Error</td>
<td>463.187</td>
<td>8.422</td>
<td></td>
</tr>
</tbody>
</table>

**WARNING**

Case 115 is an outlier (Studentized Residual = 3.200)
Case 120 is an outlier (Studentized Residual = 3.335)

Durbin-Watson D Statistic 2.124
First Order Autocorrelation -0.062

---

Data for the following results were selected according to:

(OPEPAREUR$= "TV")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
- CHIEN$ (5 levels): 1, 2, 3, 4, 5
- JOURS (4 levels): 1, 2, 3, 4
- OEIL$ (2 levels): OD, OG

Dep Var: PIO  N: 80  Multiple R: 0.759  Squared multiple R: 0.577

---

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum-of-Squares</th>
<th>Mean-Square</th>
<th>P-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEN$</td>
<td>52.925</td>
<td>13.231</td>
<td>1.357</td>
</tr>
<tr>
<td>JOURS</td>
<td>253.300</td>
<td>84.433</td>
<td>8.658</td>
</tr>
<tr>
<td>OEIL$</td>
<td>259.200</td>
<td>259.200</td>
<td>26.578</td>
</tr>
<tr>
<td>JOURS*CHIEN$</td>
<td>149.075</td>
<td>12.423</td>
<td>1.274</td>
</tr>
<tr>
<td>CHIEN$*OEIL$</td>
<td>15.925</td>
<td>3.981</td>
<td>0.408</td>
</tr>
<tr>
<td>Error</td>
<td>536.375</td>
<td>9.752</td>
<td></td>
</tr>
</tbody>
</table>

Durbin-Watson D Statistic 1.669
First Order Autocorrelation 0.148
Annexe 8:

Etude de l’effet “Opérateur” pour les mesures réalisées sur l’œil droit par chaque opérateur par rapport à l’opérateur de référence. En utilisant un test de Dunett, SYSTAT nous donne les résultats suivants :

Durbin-Watson D Statistic 1.894684290
First Order Autocorrelation 0.040975485

COL/
ROW OPERATEURS
1 AR
2 TD
3 TV

Using least squares means.
Post Hoc test of PIO
Dunnett Test with control = 1.000000000

Using MSE of 11.666 with 90 df.
Matrix of mean differences from control:
1 0.000000000
2 0.150000000
3 1.725000000

Dunnett Two Sided Test.
Matrix of pairwise comparison probabilities:
1 1.000000000
2 0.972134007
3 0.048669110

Etude de l’effet “Opérateur” pour les mesures réalisées sur l’œil gauche par chaque opérateur par rapport à l’opérateur de référence. En utilisant un test de Dunett, SYSTAT nous donne les résultats suivants :

Durbin-Watson D Statistic 2.180290962
First Order Autocorrelation -0.099928101

COL/
ROW OPERATEURS
1 AR
2 TD
3 TV

Using least squares means.
Post Hoc test of PIO
Dunnett Test with control = 1.000000000

Using MSE of 8.235 with 90 df.
Matrix of mean differences from control:
1 0.000000000
2 -1.525000000
3 -2.075000000

Dunnett Two Sided Test.
Matrix of pairwise comparison probabilities:
1 1.000000000
2 0.036522381
3 0.003316006

88
Etude de l’effet “Opérateur” sur la différence de mesures entre les deux yeux pour chaque opérateur par rapport à l’opérateur de référence, en utilisant un test de Dunett, SYSTAT nous donne les résultats suivants :

Durbin-Watson D Statistic  2.131341069  
First Order Autocorrelation -0.866540796  
COL/
ROW OPERATEURS
  1 AR
  2 TD
  3 TV

Using least squares means.
Post Hoc test of DIFFOEIL
Dunnett Test with control = 1.000000000
--------------------
Using MSE of 6.605 with 90 df.
Matrix of mean differences from control:
  1 0.000000000
  2 0.025000000
  3 1.500000000

Dunnett Two Sided Test.
Matrix of pairwise comparison probabilities:
  1 1.000000000
  2 0.998610005
  3 0.020036513
--------------------
Toulouse, 2008

NOM : VERBOIS
Prénom : Thomas

TITRE : Répétabilité et reproductibilité de la mesure de la pression intraoculaire avec le TonoPen chez le chien


MOTS-CLES : pression intraoculaire, répétabilité, reproductibilité, TonoPen, chien

ENGLISH TITLE : Repeatability and reproducibility of measurements of intraocular pressure with the TonoPen in dogs

ABSTRACT : The care and monitoring of glaucomatous animals or animals predisposed to glaucoma, requires regular measurement of the intraocular pressure. In practice, measurements are conducted by different practitioners. Our objective is to assess the impact of the observers’ experience over the repeatability and reproducibility of the measurements recorded. After a presentation of previously published studies about intraocular pressure and its variability, we describe the experimental study: intraocular pressure was measured in five dogs over a four day period by three observers with various degree of experience in tonometry. Good repeatability and reproducibility is observed beyond a minimum level of experience.. Nevertheless we conclude that one should consider potential variation in the practitioners conducting measurements to assess and diagnose potential abnormalities in patients.

KEYWORDS : intraocular pressure, repeatability, reproductibility, TonoPen, dog