OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Modeling the fish community population dynamics and forecasting the eradication success of an exotic fish from an alpine stream

Laplanche, Christophe and Elger, Arnaud and Santoul, Frédéric and Thiede, Gary P. and Budy, Phaedra Modeling the fish community population dynamics and forecasting the eradication success of an exotic fish from an alpine stream. (2018) Biological Conservation, 223. 34-46. ISSN 0006-3207

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
525kB

Official URL: https://doi.org/10.1016/j.biocon.2018.04.024

Abstract

Management actions aimed at eradicating exotic fish species from riverine ecosystems can be better informed by forecasting abilities of mechanistic models. We illustrate this point with an example of the Logan River, Utah, originally populated with endemic cutthroat trout (Oncorhynchus clarkii utah), which compete with exotic brown trout (Salmo trutta). The coexistence equilibrium was disrupted by a large scale, experimental removal of the exotic species in 2009-2011 (on average, 8.2% of the stock each year), followed by an increase in the density of the native species. We built a spatially-explicit, reaction-diffusion model encompassing four key processes: population growth in heterogeneous habitat, competition, dispersal, and a management action. We calibrated the model with detailed long-term monitoring data (2001-2016) collected along the 35.4-km long river main channel. Our model, although simple, did a remarkable job reproducing the system steady state prior to the management action. Insights gained from the model independent predictions are consistent with available knowledge and indicate that the exotic species is more competitive; however, the native species still occupies more favorable habitat upstream. Dynamic runs of the model also recreated the observed increase of the native species following the management action. The model can simulate two possible distinct long-term outcomes: recovery or eradication of the exotic species. The processing of available knowledge using Bayesian methods allowed us to conclude that the chance for eradication of the invader was low at the beginning of the experimental removal (0.7% in 2009) and increased (20.5% in 2016) by using more recent monitoring data. We show that accessible mathematical and numerical tools can provide highly informative insights for managers (e.g., outcome of their conservation actions), identify knowledge gaps, and provide testable theory for researchers.

Item Type:Article
HAL Id:hal-01904748
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Other partners > Utah State University - USU (USA)
Laboratory name:
Statistics:download
Deposited By: christophe laplanche
Deposited On:25 Oct 2018 09:39

Repository Staff Only: item control page