OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

André, Laurie and Abanades, Stéphane and Cassayre, Laurent High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides. (2017) Journal of Solid State Chemistry, 253. 6-14. ISSN 0022-4596

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: http://doi.org/10.1016/j.jssc.2017.05.015

Abstract

Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above ~15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

Item Type:Article
HAL Id:hal-01786111
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Other partners > Université de Perpignan Via Domitia - UPVD (FRANCE)
Laboratory name:
Statistics:download
Deposited By: Loetitia MOYA
Deposited On:20 Jul 2018 09:33

Repository Staff Only: item control page