OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting

Callan, Daniel E. and Gateau, Thibault and Durantin, Gautier and Gonthier, Nicolas and Dehais, Frédéric Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting. (2018) Human Brain Mapping. ISSN 1065-9471

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: http://dx.doi.org/10.1002/hbm.24026

Abstract

Individuals often have reduced ability to hear alarms in real world situations (e.g., anesthesia monitoring, flying airplanes) when attention is focused on another task, sometimes with devastating consequences. This phenomenon is called inattentional deafness and usually occurs under critical high workload conditions. It is difficult to simulate the critical nature of these tasks in the laboratory. In this study, dry electroencephalography is used to investigate inattentional deafness in real flight while piloting an airplane. The pilots participating in the experiment responded to audio alarms while experiencing critical high workload situations. It was found that missed relative to detected alarms were marked by reduced stimulus evoked phase synchrony in theta and alpha frequencies (6–14 Hz) from 120 to 230 ms poststimulus onset. Correlation of alarm detection performance with intertrial coherence measures of neural phase synchrony showed different frequency and time ranges for detected and missed alarms. These results are consistent with selective attentional processes actively disrupting oscillatory coherence in sensory networks not involved with the primary task (piloting in this case) under critical high load conditions. This hypothesis is corroborated by analyses of flight parameters showing greater maneuvering associated with difficult phases of flight occurring during missed alarms. Our results suggest modulation of neural oscillation is a general mechanism of attention utilizing enhancement of phase synchrony to sharpen alarm perception during successful divided attention, and disruption of phase synchrony in brain networks when attentional demands of the primary task are great, such as in the case of inattentional deafness.

Item Type:Article
HAL Id:hal-01738660
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Other partners > The Center for Information and Neural Networks - CiNet (JAPAN)
Other partners > National Institute of Information and Communications Technology - NICT (JAPAN)
Other partners > Queensland University of Technology - QUT (AUSTRALIA)
Laboratory name:
Funders:
AXARF - DGA MRIS - Cinet
Statistics:download
Deposited By: Frédéric Dehais
Deposited On:20 Mar 2018 15:42

Repository Staff Only: item control page