OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Admissibility and unifiability in contact logics

Balbiani, Philippe and Gencer, Cigdem Admissibility and unifiability in contact logics. (2015) In: 10th International Tbilisi Symposium on Logic, Language, and Computation (TbiLLC 2013), 23 September 2013 - 27 September 2013 (Gudauri, Georgia).

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
199kB

Official URL: https://doi.org/10.1007/978-3-662-46906-4_4

Abstract

Contact logics are logics for reasoning about the contact relations between regular subsets in a topological space. Admissible inference rules can be used to improve the performance of any algorithm that handles provability within the context of contact logics. The decision problem of unifiability can be seen as a special case of the decision problem of admissibility. In this paper, we examine the decidability of admissibility problems and unifiability problems in contact logics.

Item Type:Conference or Workshop Item (Paper)
Additional Information:Thanks to Springer editor. This papers appears in volume 8984 of Lecture Notes in Computer Science ISSN : 0302-9743 ISBN 978-3-662-46905-7 The original PDF is available at: https://link.springer.com/chapter/10.1007%2F978-3-662-46906-4_4
HAL Id:hal-01809353
Audience (conference):International conference proceedings
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Université de Toulouse > Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université de Toulouse > Université Toulouse 1 Capitole - UT1 (FRANCE)
Other partners > İstanbul Kültür Üniversitesi - IKU (TURKEY)
Laboratory name:
Statistics:download
Deposited By: IRIT IRIT
Deposited On:09 May 2018 08:01

Repository Staff Only: item control page