OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets

Gojon, Romain and Bogey, Christophe Flow Structure Oscillations and Tone Production in Underexpanded Impinging Round Jets. (2017) AIAA Journal, 55 (6). 1792-1805. ISSN 0001-1452

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.2514/1.J055618


Flow structure oscillations and tone generation mechanisms in an underexpanded round jet impinging on a flat plate normally have been investigated using compressible large-eddy simulations. At the exit of a pipe nozzle of diameter D, the jet is characterized by a nozzle pressure ratio of 4.03, an exit Mach number of 1, a fully expanded Mach number of 1.56, and a Reynolds number of 60000. Four distances between the nozzle and the plate are considered. Snapshots of vorticity, density, pressure, and mean velocity flowfields are first presented. The latter results compare well with data of the literature. In three cases, in particular, a Mach disk appears to form just upstream from the plate. The convection velocity of flow structures between the nozzle and the plate, and its dependence on the nozzle-to-plate distance, are then examined. The properties of the jet near pressure fields are subsequently described using Fourier analysis. Tones emerge in the spectra at frequencies consistent with those expected for an aeroacoustic feedback loop between the nozzle and the plate as well as with measurements. Their amplitudes are particularly high in the presence of a near-wall Mach disk. The axisymmetric or helical natures of the jet oscillations at the tone frequencies are determined. The motions of the Mach disk found just upstream from the plate for certain nozzle-to-plate distances are then explored. As noted for the jet oscillations, axially pulsing and helical motions are observed, in agreement with experiments. Finally, the intermittency of the tone intensities is studied. They significantly vary in time, except for the two cases where the near-wall Mach disk has a nearly periodic motion at the dominant tone frequency.

Item Type:Article
Additional Information:Thanks to AIAA editor. The definitive version is available at : https://arc.aiaa.org/doi/10.2514/1.J055618
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Other partners > Institut National des Sciences Appliquées de Lyon - INSA (FRANCE)
Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Other partners > Université Claude Bernard-Lyon I - UCBL (FRANCE)
Other partners > Ecole Centrale de Lyon (FRANCE)
Laboratory name:
Deposited By: Romain GOJON
Deposited On:13 Dec 2017 10:05

Repository Staff Only: item control page