Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr
Eprints ID : 18334

To cite this version : Pierart, Antoine and Dumat, Camille and Séjalon-Delmas, Nathalie Interaction between lombricompost and AMF communities: consequences on metals accumulation and bioaccessibility in urban agriculture crops. (2017) In: Act for sustainable Urban Agricultures (UA) : vector for ecological transition, 6 June 2017 - 9 June 2017 (Toulouse, France). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Interaction between lombricompost and AMF communities: consequences on metals accumulation and bioaccessibility in urban agriculture crops

Context
- Two-thirds of the population leaves currently in urban areas, and this trend is increasing
- A will of self-growing food sprout in response to the economic/ecological crisis
- Soil food quality for urban agriculture (UA) is a major concern due to pollution
- Persistent trace metals (TM), such as cadmium (Cd) and lead (Pb) are common pollutants
- Antimony (Sb) is an emerging anthropic contaminant
- Biostimulators and organic amendments are used by gardeners to increase yields
- Their properties and reactivity can affect soil microorganisms and TM mobility

Objectives
- Study the effect of lombricompost on:
 1. arbuscular mycorrhizal fungal (AMF) communities in plant roots
 2. TM phytostabilization and human bioaccessibility.

Material and methods
- **Scale**: Microcosm pot experiment under greenhouse condition
- **Plant**: Organic leek (Allium porrum L.), 5 months
- **Soil**: Comparison of anthropic and geogenic contamination
- **Treatments**: a Lombricompost, to increase soil % OM by 1%
- **Measurements**: Total TM in plant
 - Bioaccessible fraction (BARGE method)
 - AMF community (Ruminia MISeq)

Analysis: Mother & Suchan for AMF sequences analysis

Results

- **Effects of Lombricompost on Fungal community**
 - Important changes in root fungal community (both soils)
 - *Rhiophagus irregularis* increased (BZC+25% & NTE+40%)
 - Funneliformis mosseae disappeared in NTE soil
 - Decrease of other *Rhizophagus* species and Glomeraceae species.

- **Effects of Lombricompost on TM accumulation**
 - BZC soil (Anthropic Pb/Sb contamination)
 - Sb: No effect
 - Cd: Decrease
 - Pb: Increase
 - NTE soil (Geogenic Pb/Sb contamination)
 - Sb/Pb/Cd: No effect
 - Pb accumulation was low compared to soil total content

Lombricompost affected TM phytoavailability, but the human bioaccessibility was not affected in plant.

Important shift of symbiotic fungal communities, impacted species can influence TM mobility and phytostabilization. Field trials is needed, to enhance hazard recommendations for gardeners