OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Investigation of unsteady phenomena in rotor/stator cavities using Large Eddy Simulation

Bridel Bertomeu, Thibault. Investigation of unsteady phenomena in rotor/stator cavities using Large Eddy Simulation. PhD, Dynamique des fluides, Institut National Polytechnique de Toulouse, 2016

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
10MB

Abstract

This thesis provides a numerical and theoretical investigation of transitional and turbulent enclosed rotating flows, with a focus on the formation of macroscopic coherent flow structures. The underlying processes are strongly threedimensional due to the presence of boundary layers on the discs and on the walls of the outer (resp. inner) cylindrical shroud (resp. shaft). The complexity of these flows poses a great challenge in fundamental research however the present work is also of importance for industrial rotating machinery, from hard-drives to space engines turbopumps - the design issues of the latter being behind the motivation for this thesis. The present work consists of two major investigations. First, industrial cavities are modeled by smooth rotor/stator cavities and therein the dominant flow dynamics is investigated. For the experimental campaigns on industrial machinery revealed dangerous unsteady phenomena within the cavities, the emphasis is put on the reproduction and monitoring of unsteady pressure fluctuations within the smooth cavities. Then, the LES of three configurations of real industrial turbines are conducted to study in situ the pressure fluctuations and apply the diagnostics already vetted on academic problems.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Gicquel, Laurent Y.M. and Staffelbach, Gabriel
Statistics:download
Deposited By: Thèse INPT
Deposited On:08 Jun 2017 08:03

Repository Staff Only: item control page