Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 17348

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
GRAYSCALE LITHOGRAPHY TO FABRICATE VARYING-DEPTH NANOCHANNELS IN A SINGLE STEP
Antoine Naillon1,2, Hajar Massadi1, Rémi Courson3, Pierre-François Calmon1, Lucie Seveno1, Marc Prat2, and Pierre Joseph1*

1 LAAS-CNRS, Université de Toulouse, CNRS, UPS, INP, Toulouse, FRANCE, 2 IMFT, Université de Toulouse, CNRS, Toulouse, FRANCE, 3 Kloe SA, Montpellier, FRANCE

ABSTRACT
We report a new, fast and versatile method to fabricate nanochannels with non-uniform depth in a single step, in the range 50-500nm. The process is based on maskless laser lithography to structure a photosensitive resist (PR). The lateral dimension can be as small as 2µm. Functional nanofluidic chips with slopes, steps, and pore networks mimicking a nanoporous medium were fabricated and tested.

KEYWORDS: nanofabrication, grayscale lithography, 3D lithography, nanofluidics

INTRODUCTION
Fluidic architectures including several depths in a single chip open the path to interesting functions such as mixing, trapping or sorting. The drawback of standard fabrication methods is that they lead to a homogeneous thickness. Variable depths can be obtained in one step using a grayscale optical mask [1], a digital micro mirror device [2], or using 3D printing. However, the spatial resolution is quite low (>10µm) and the need to use specific masks prevents easily changing the design. E-beam lithography enables versatility in modifying designs and nanometer resolutions, but the process is time consuming and expensive. We have developed a direct laser writing method with nm-depth resolution.

EXPERIMENTAL
As shown in Figure 1 (left), a positive PR (ECI AZ 3012) is spin-coated at 3000RPM on a silicon wafer. The main step of the process consists of exposing the PR to a laser light (405nm) controlled dose. This is realized on a Dilase 750 machine (Kloe) by adjusting the laser power and beam scanning velocity. Beam spatial extension is set to 2 µm. Process parameters are optimized to have a dose-dependent developing rate (Figure 1, right), which is the condition to precisely control grayscale lithography. Namely, scan velocity is inferior to 1 mm/s (to obtain a smooth surface), distance between successive laser scans is set to 1 µm, soft-bake is longer than that in standard processes to reduce the PR contrast.

In these conditions, after developing, the remaining PR thickness is controlled by laser power (Figure 1(right)). Notably, quick quantitative control of the process can be made just by observing the color of the remaining PR (light interferences). Channels are then transferred into silicon by dry
etching. We choose plasma parameters to obtain a relative etching rate between silicon and the remaining PR (selectivity) lower than 1. With 1.1µm PR, it enables fabricating channels of depth 50-500nm in a single step, with many geometries accessible (Figure 2, left).

RESULTS AND DISCUSSION

Our approach is thus a simple and versatile method to obtain any varying depth architecture in a single step. It is particularly suitable to fabricate nanochannel networks mimicking nanoporous media (see eg. architecture of Figure 2, middle), which are valuable tools to study processes occurring inside real rocks. As a proof of concept, we measure imbibition kinetics in a nanoslit including 4 different increasing depths (Figure 2, right). Meniscus velocity clearly changes at the steps. Semi-quantitative features are in line with predictions: slowing down at each step (decreased capillary pulling force), and almost constant velocity on each segment (hydraulic resistance dominated by already filled part).

ACKNOWLEDGEMENTS
We thank ANDRA and CNRS for funding. This work was partly supported by LAAS-CNRS micro and nano technologies platform member of the French RENATECH network.

REFERENCES

CONTACT
* P. Joseph; phone: +33-561336360; pjoseph@laas.fr