To cite this version: Gaucherel, Cedric and Martinet, Vincent and Inchausti, Pablo and Schaller, Noémie and Bamière, Laure and Sheeren, David and Gibon, Annick and Joannon, Alexandre and Castellazzi, Marie and Boussard, Hugues and Barraquand, Frédéric and Lazrak, El-Ghali and Mari, Jean-Francois and Houet, Thomas and Bretagnolle, Vincent *A multidisciplinary modelling approach to understand the effects of landscape dynamics on biodiversity.* (2010) In: 2010 International Conference on Integrative Landscape Modelling, 3 February 2010 - 5 February 2010 (Montpellier, France). (Unpublished)
A multidisciplinary modeling approach to understand the effects of landscape dynamics on biodiversity

ANR BiodivAgriM Project

LANDMLOD2010, Mpl 04/02/2010
Over the last 40 years, agricultural extension and intensification of land use has induced profound changes in distribution and dynamics of farmland biodiversity (e.g. **Bustard** patrimonial species) and in the functioning of European agroecosystems:

- Simplification/specialisation of agricultural landscapes, abandonment of less fertile farmland areas, increase in the input of pesticides and fertilisers per unit area

Bignal and McCracken, 1996
Robinson and Sutherland, 2002
Gregory et al., 2004
Drastic Land Use changes in France

Main land use (SAU) per commune 2000

Large harvesting (1988-2000)

Donald et al., 2001
Benton et al., 2002
Robinson & Sutherland, 2002
The *BiodivAgriM* ANR project

Context

- Agroecosystems are mainly private properties, whose dynamics need to be better understood in order to preserve their biodiversity.
- Nine French research teams have recently joined their skills in a multi-disciplinary project, *BiodivAgriM*, whose main goal is to test, validate, and predict the consequences of different scenarios of landscape changes on the distribution, abundance and persistence of biodiversity in agroecosystems.

Modelling stakes

- A central goal of this project was to generate a multi-purpose modelling platform (WP4), which would make it possible to couple different spatially explicit models toward the same objective: to understand the impacts of agricultural practices on biodiversity.
- Such a modelling approach was a real challenge. We thought about either a unique integrated platform or different models to be coupled or compared.
Some questions addressed

1. Do our present system of incentives and constraints on agricultural activities generate landscape mosaics allowing biodiversity conservation?
2. How will be impacted species abundances, depending on these system choices?
3. How land covers and land uses do constrain the dynamics and persistence of bird or small mammal populations?
4. How land cover drivers such as crop rotations, irrigation, soil fertility and cropping systems influence landscape structure?
5. Should we build several specific models, or build a global modelling platform coupling the various models developed for each question?
The (modeling) WP4 architecture

We managed to organize available models amongst the teams involved in this project within a coherent scheme, thus articulating the specific issues related to landscape in biology, ecology, socio-economy, geography, and agronomy disciplines.

An illustration follows…
How feasible is a generic model?

It rapidly appeared difficult to build from scratch an integrated modelling platform, wanted by mathematical and computing scientists, while ecologists and socio-economists needed more time to improve their understanding of processes.

Illustration: A2 model coupling

Context:
Conservation of a patrimonial carab species in agricultural zones;

Objectives:
To identify landscape structures favourable to the species, by the use of a “landscape language”;

Hypotheses:
Intermediate hedgerow isolation and higher landscape contagion (connectivity) are favourable to the carab species conservation;

Method:
Modelling the landscape language associated to various landscape configurations, and model population dynamics on them.

Study site: Polders in Brittany (1164 landscape units, fields + dykes 4%); mainly intensive agriculture.
Landscape model: DYPAL

In progress; a model to translate dynamical equations into simulations, with the Free / Opensource / Interactive Java® version (DYPAL prototype);

© C. Gaucherel, F. Escandel & C. Le Brouster, INRA
The landscape “language”

- Common use of transition matrices (Markov) or rule-based models (MAS, SIG).

- Yet, to our knowledge, no real attempts to formalize (equations) patchy landscape dynamics exist.

Language inspired from « formal grammars » (e.g. \(L\)-systems).

\[
\begin{align*}
M(l, t, a, d) & : (d < 0.5) \& (l = 1) \rightarrow M(2, l, a, d) \\
M(l, t, a, d) & : (d < 0.5) \& (l = 2) \& (t < 4) \rightarrow M(2, t + 1, a, d) \\
M(l, t, a, d) & : (d < 0.5) \& (l = 2) \& (t = 4) \rightarrow M(3, l, a, d) \\
F(f) < M(l, t, a, d) & : (d < 0.5) \& (l = 3) \& (S_1(f) < 15) \rightarrow M(l, 1, a, d) \\
F(f) < M(l, t, a, d) & : (d < 0.5) \& (l = 3) \& (S_2(f) < 55) \rightarrow M(2, l, a, d)
\end{align*}
\]

Chomsky 1956; Lindenmayer 1971; Barbier de Reuille 2006
The population dynamics model

Use of **Spatialized coupled Leslie** matrices (each associated to local populations in fields and dykes):

\[\text{Nbmig}_{\text{in} \rightarrow \text{out}} = \text{Nb} \text{bind}_{\text{in}} \times T_{\text{mig}}(\text{in} \rightarrow \text{out}) \times \text{LinCom}_{(\text{in} \rightarrow \text{out})} / (\text{Surf}_{\text{in}} / \text{Surf}_{\text{out}}) \]

Coupling of population and landscape models, by focusing on **migratory fluxes** between each landscape pair unit and by studying their joined dynamics.

Close to metapopulation models, except that the whole landscape (and its complexity) is considered.
Spatialized population dynamics

Choice of (static) landscape compositions/configurations...
- Observed optimum for the population (significant $r^2 \sim 0.33$) along with the habitat clustering (due to pendular movement of the species).

Rétho et al. 2007

Types: n°1

Soon dynamical landscape...
Conclusion

• A central goal of the BiodivAgriM project was to generate a multi-purpose modelling platform (WP4), which would allow to couple various spatially explicit models toward the same objective: to understand the impacts of agricultural practices on specific biodiversity.

• No doubt that some of our models would test, validate, and predict the consequences of different scenarii of landscape changes on the distribution, abundance and persistence of biodiversity in agroecosystems.

• Such a modelling approach was a real challenge. The topic is probably not mature enough to build a unique integrated platform (If ever needed?).