OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Classification d’images hyperspectrales par des méthodes fonctionnelles non-paramétriques

Zullo, Anthony and Fauvel, Mathieu and Ferraty, Frédéric Classification d’images hyperspectrales par des méthodes fonctionnelles non-paramétriques. (2014) In: 3. colloque scientifique SFPT-GH, 15 May 2014 - 16 May 2014 (Porquerolles, France). (Unpublished)

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
534kB

Abstract

la classification supervisée d’images hyperspectrales est rendue difficile par le grand nombre de variables spectrales et par le petit nombre d’échantillons de références pour l’entraînement. Plusieurs méthodes ont été proposées pour aborder ce problème. Citons par exemple les méthodes Bayésiennes, les méthodes d’extraction de caractéristiques, les forêts aléatoires, les réseaux de neurones ainsi que les méthodes à noyau. En particulier, les Machines à Vecteurs de Support ou Séparateur à Vaste Marge (SVM) ont montré de très bonnes performances en termes de bonnes classification. Cependant, une des caractéristiques principales de l’imagerie hyperspectrale n’a pas été encore étudiée : la très forte corrélation entre deux bandes spectrales consécutives, liée à la nature physique des spectres de réflectance. Une façon de prendre en compte cette propriété est de ne pas considérer les spectres comme des vecteurs de variables spectrales mais comme la discrétisation de fonctions continues de la longueur d’onde. Cette modélisation permet ainsi de prendre en compte naturellement l’ordre des bandes spectrales, la forme des spectres ou la dérivée des spectres de longueurs d’ondes. De plus, l’utilisation de mesures de proximité spécifiques appelées « pseudo-métriques » sur les fonctions permet une plus grande robustesse face à la grande dimension spectrale. Dans cette présentation, nous introduirons une approche non-paramétrique de classification de fonctions à l’aide d’un modèle statistique fonctionnel. En particulier, la construction de 3 pseudo-métriques adaptées à la comparaison de courbes sera présentée. La première pseudo-métrique considérée est une extension de la distance vectorielle L2 aux espaces fonctionnels, la seconde est basée sur l’Analyse Fonctionnelle en Composante Principale (FPCA) et la troisième utilise sur la Régression Multiples des Moindres Carrés Partiels (MPLSR). Des résultats obtenus sur des images hyperspectrales réelles seront présentés. Pour comparaison, un modèle de mélange Gaussien et des SVM ont été appliqués. En termes de taux d’erreurs de classification, la méthode proposée avec la pseudo-métrique MPLSR donnent les meilleurs résultats. Nous conclurons la présentation sur les perspectives qu’offre la modélisation fonctionnelle pour le traitement d’images hyperspectrales.

Item Type:Conference or Workshop Item (Paper)
ProdINRA Id:349294
Audience (conference):National conference without published proceedings
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
French research institutions > Institut National de la Recherche Agronomique - INRA (FRANCE)
Université de Toulouse > Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Université de Toulouse > Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université de Toulouse > Université Toulouse 1 Capitole - UT1 (FRANCE)
Laboratory name:
Statistics:download
Deposited By: INRA INRA
Deposited On:08 Dec 2017 08:10

Repository Staff Only: item control page