OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Thermal fatigue as the origin of regolith on small asteroids

Delbo, Marco and Libourel, Guy and Wilkerson, Justin and Murdoch, Naomi and Michel, Patrick and Ramesh, K. T. and Ganino, Clément and Verati, Chrystele and Marchi, Simone Thermal fatigue as the origin of regolith on small asteroids. (2014) Nature, 508 (7495). 233-236. ISSN 0028-0836

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
3MB

Official URL: http://dx.doi.org/10.1038/nature13153

Abstract

Space missions and thermal infrared observations3 have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders bymicrometeoroid impact. Laboratory experiments6 and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second,which corresponds to the gravitational escape velocity of kilometre-sized asteroids.Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids.We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originatingin thermal fatigue fragmentationmay be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids.

Item Type:Article
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Other partners > Université Nice Sophia Antipolis (FRANCE)
Other partners > Observatoire de la Côte d'Azur (FRANCE)
Other partners > Southwest Research Institute (USA)
Other partners > Institut national des sciences de l'Univers - INSU (FRANCE)
Other partners > Johns Hopkins University - JHU (USA)
Other partners > Université de Lorraine (FRANCE)
Laboratory name:
Statistics:download
Deposited By: Naomi Murdoch
Deposited On:30 Jan 2017 16:39

Repository Staff Only: item control page