Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 16118

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Macro-scale modeling of two-phase flows within structured packings

Sylvain Pasquier, Yohan Davit, Michel Quintard

Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse FRANCE

June 6, 2016
Structured packings as a structured porous medium

- A multi-scale process
- A complex interaction between gas and liquid
- A macro-scale model for the gas / liquid system?
Structured packings as a structured porous medium

- A multi-scale process
- A complex interaction between gas and liquid
- A macro-scale model for the gas / liquid system?
Structured packings as a structured porous medium

- A multi-scale process
- A complex interaction between gas and liquid
- A macro-scale model for the gas / liquid system?
Structured packings as a structured porous medium

- A multi-scale process
- A complex interaction between gas and liquid

A macro-scale model for the gas / liquid system?
Up-scaling method

- Volume averaging method

\[
p_g \quad u_g \quad K^*_{\beta\gamma} \quad \langle u_g \rangle \quad \langle p_g \rangle^g \\
p_l \quad u_l \quad \langle u_l \rangle \quad \langle p_l \rangle^l
\]

- Example: Darcy equation

\[
\frac{\varepsilon}{t} \frac{\partial S_l}{\partial t} + \nabla \cdot \langle u_l \rangle = 0
\]

\[
\langle u_l \rangle = -\frac{K_0}{\mu_l} \cdot \left(\nabla \langle p_l \rangle^l - \rho_l g \right)
\]
Up-scaling method

- Volume averaging method

\[
p_g \quad u_g \quad \rightarrow \quad K^*_{\beta\gamma} \quad \langle u_g \rangle \quad \langle p_g \rangle^g \quad \langle u_l \rangle \quad \langle p_l \rangle^l
\]

- Example: Darcy equation

\[
\varepsilon \frac{\partial S_l}{\partial t} + \nabla \cdot \langle u_l \rangle = 0
\]
\[
\langle u_l \rangle = -\frac{K_0}{\mu_l} \cdot (\nabla \langle p_l \rangle^l - \rho_l g)
\]
Darcy’s laws for gas/liquid flows in packings?

- Darcy-generalised equation (single phase approximation) Soulaine et al., Pasquier et al.

\[
\langle u_g \rangle = -\frac{K_0}{\mu_g} \cdot (\nabla \langle p_g \rangle^g - \rho_g g) - F \cdot \langle u_g \rangle
\]

- Strong interaction between liquid and gas in the loading regime
 - pressure drop rise \(\nabla \langle p_g \rangle^g \)
 - liquid retention \(h_l \) increases

- Requires a coupled model at the macro-scale

Experimental data extracted from Brunazzi et al. (2002)
Darcy’s laws for gas/liquid flows in packings?

- Darcy-generalised equation (single phase approximation) Soulaïne et al., Pasquier et al.

\[
\langle u_g \rangle = -\frac{K_0}{\mu_g} \cdot (\nabla \langle p_g \rangle^g - \rho_g g) - F \cdot \langle u_g \rangle
\]

- Strong interaction between liquid and gas in the loading regime
 - pressure drop rise \(\nabla \langle p_g \rangle^g \)
 - liquid retention \(h_l \) increases

Experimental data extracted from Brunazzi et al. (2002)

- Requires a coupled model at the macro-scale
Darcy’s laws for gas/liquid flows in packings?

- Darcy-generalised equation (single phase approximation) Soulaine et al., Pasquier et al.

\[
\langle u_g \rangle = -\frac{K_0}{\mu_g} \cdot (\nabla \langle p_g \rangle^g - \rho_g g) - F \cdot \langle u_g \rangle
\]

- Strong interaction between liquid and gas in the loading regime
 - pressure drop rise \(\nabla \langle p_g \rangle^g \)
 - liquid retention \(h_l \) increases

- Requires a coupled model at the macro-scale

Experimental data extracted from Brunazzi et al. (2002)
Up-scaling - Coupled model

- Viscous regime (Whitaker, Lasseux et al.)

\[
\begin{pmatrix}
\langle u_l \rangle \\
\langle u_g \rangle
\end{pmatrix} = - \begin{pmatrix}
\frac{K_{ll}}{\mu_l} & \frac{K_{lg}}{\mu_g} \\
\frac{K_{gl}}{\mu_l} & \frac{K_{gg}}{\mu_g}
\end{pmatrix}
\begin{pmatrix}
\nabla \langle p_l \rangle_l \\
\nabla \langle p_g \rangle_g
\end{pmatrix}
\]

- Application: Two-phase flow in particle beds

- 1D resolution of the coupled system (OpenFoam)

- Closures of K_{ll}^*, K_{gg}^*, K_{lg}^*, K_{gl}^* from experimental results

Calide experiment - IRSN - see Chikhi et al. 2016
Numerical resolution : IMPES Method

- IMplicit Pressure Explicit Saturation
- Sequential resolution of an equation on pressure and on saturation

\[
\frac{\partial}{\partial t} \begin{pmatrix} S_l \\ S_g \end{pmatrix} + \nabla \cdot \begin{pmatrix} \langle u_l \rangle \\ \langle u_g \rangle \end{pmatrix} = 0
\]

\[
\begin{pmatrix} \langle u_l \rangle \\ \langle u_g \rangle \end{pmatrix} = - \begin{pmatrix} \frac{K^*_l}{\mu_l} & \frac{K^*_l}{\mu_l} \\ \frac{K^*_g}{\mu_g} & \frac{K^*_g}{\mu_g} \end{pmatrix} \begin{pmatrix} \nabla \langle p_l \rangle^I \\ \nabla \langle p_g \rangle^g \end{pmatrix}
\]

- Finite volume method
- Scalar or tensorial effective parameters \(K^* \)
Up-scaling - Coupled model

- **Dimensionless pressure drop in the viscous regime**

\[
- \frac{|\nabla \langle p_g \rangle^g|}{\rho_l g}
\]

![Image showing experimental results and numerical modeling](image-url)

Experimental results Clavier et al. (2015)

Numerical modeling of the coupled system (OpenFoam)
Up-scaling - Coupled model

- Inertial regime (Lasseux et al., 2008)

\[
\begin{pmatrix}
\langle u_l \rangle \\
\langle u_g \rangle
\end{pmatrix} = -\begin{pmatrix}
\frac{K^*_l}{\mu_l} & \frac{K^*_g}{\mu_g} \\
\frac{K^*_g}{\mu_l} & \frac{K^*_g}{\mu_g}
\end{pmatrix}
\begin{pmatrix}
\nabla \langle p_l \rangle^l \\
\nabla \langle p_g \rangle^g
\end{pmatrix} - \begin{pmatrix}
F^*_l & F^*_g \\
F^*_g & F^*_g
\end{pmatrix}
\begin{pmatrix}
\langle u_l \rangle \\
\langle u_g \rangle
\end{pmatrix}
\]

\[
|\nabla \langle p_g \rangle^g| = \frac{\rho_l g}{\rho_l g}
\]

\[
Re_g = 0
\]

\[
Re_l = 0
\]

\[
Stokes Re_l = 128
\]

\[
Inertia Re_l = 128
\]
Application to structured packings

- **1D resolution of a air / water system**

- Comparison of a Darcy model and coupled models (viscous and inertial)

- Closures:
 - Viscous: analogy to a liquid film in a cylinder tube
 - Inertial: based on the closures from the Calide experiment

\[
K_{gg} = K_0 (1 - S_l)^2 ; \quad K_{ll} = K_0 S_l^3 \\
K_{lg} = \frac{\mu_g}{\mu_l} \frac{S_l^2}{(1 - S_l)} ; \quad K_{gl} = \frac{(1 - S_l)}{S_l}
\]
Application to structured packings

- 1D resolution of a air / water system

- Comparison of a Darcy model and coupled models (viscous and inertial)

- Closures:
 - Viscous: analogy to a liquid film in a cylinder tube
 - Inertial: based on the closures from the Calide experiment

\[
K_{gg} = K_0 (1 - S_l)^2 ; \quad K_{II} = K_0 S_l^3
\]

\[
K_{lg} = \frac{\mu_g}{\mu_l} \frac{S_l^2}{(1 - S_l)} ; \quad K_{gl} = \frac{(1 - S_l)}{S_l}
\]
Application to structured packings

- 1D resolution of a air / water system

- Comparison of a Darcy model and coupled models (viscous and inertial)

- Closures:
 - Viscous: analogy to a liquid film in a cylinder tube
 - Inertial: based on the closures from the Calide experiment

\[
K_{gg} = K_0 (1 - S_l)^2 \quad ; \quad K_{ll} = K_0 S_l^3
\]

\[
K_{lg} = \frac{\mu_g}{\mu_l} \frac{S_l^2}{(1 - S_l)} \quad ; \quad K_{gl} = \frac{(1 - S_l)}{S_l}
\]
Application to structured packings

- Analysis of the pressure drop $\nabla \langle p_g \rangle^g$ and retention h_l

![Graph 1](image1.png)

- The inertial coupled model reflects the increase in retention and pressure drop
- Comparison from Suess and Spiegel (1991) for illustration

![Graph 2](image2.png)
Modeling of the dispersion of liquid? (1)

- Tomography visualisation

 Fourati et al. (2012)

- A two-equation model for the liquid phase

 Mahr and Mewes (1999)

 Schug et al. (2015)
Modeling of the dispersion of liquid? (1)

- Tomography visualisation

Mahr and Mewes (1999)

- A two-equation model for the liquid phase

Fourati et al. (2012)

Schug et al. (2015)
Modeling of the dispersion of liquid? (1)

- Tomography visualisation

 Fourati et al. (2012)

- A two-equation model for the liquid phase

 Mahr and Mewes (1999)

 Schug et al. (2015)
Modeling of the dispersion of liquid? (2)

- Two-equation model for the liquid phase (Mahr and Mewes, Soulaie et al.)

\[
\langle u_i \rangle = -\frac{K^*_i}{\mu_i} \cdot (\nabla \langle p_i \rangle - \rho_i g) ; \quad \langle u_2 \rangle = -\frac{K^*_2}{\mu_2} \cdot (\nabla \langle p_2 \rangle - \rho_2 g)
\]

\[
K^*_i = K^*_i \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \cos^2 \theta^* \sin^2 \theta^* & \pm \cos \theta^* \sin \theta^* \\
0 & \pm \cos \theta^* \sin \theta^* & \cos^2 \theta^* \sin^2 \theta^*
\end{array} \right)
\]

\(i = 1, 2\)

- Liquid exchange at the contact points?

\[
\frac{\partial S_{i1}}{\partial t} + \nabla \cdot \langle u_{i1} \rangle = \dot{m} \quad \quad \quad \quad \frac{\partial S_{i2}}{\partial t} + \nabla \cdot \langle u_{i2} \rangle = -\dot{m}
\]
Modeling of the dispersion of liquid? (2)

- Two-equation model for the liquid phase (Mahr and Mewes, Soulaine et al.)

\[
\langle u_{l_1} \rangle = - \frac{K_{l_1}^*}{\mu_l} \cdot \left(\nabla \langle p_{l_1} \rangle - \rho_l \mathbf{g} \right) \quad ; \quad \langle u_{l_2} \rangle = - \frac{K_{l_2}^*}{\mu_l} \cdot \left(\nabla \langle p_{l_2} \rangle - \rho_l \mathbf{g} \right)
\]

\[
K_{l_i}^* = K_{l_i}^* \begin{pmatrix}
0 & 0 & 0 \\
0 & \cos^2 \theta^* \sin^2 \theta^* & \pm \cos \theta^* \sin \theta^* \\
0 & \pm \cos \theta^* \sin \theta^* & \cos^2 \theta^* \sin^2 \theta^*
\end{pmatrix}
\]
i = 1, 2

- Liquid exchange at the contact points?

\[
\frac{\partial S_{l_1}}{\partial t} + \nabla \cdot \langle u_{l_1} \rangle = \dot{m} \quad ; \quad \frac{\partial S_{l_2}}{\partial t} + \nabla \cdot \langle u_{l_2} \rangle = -\dot{m}
\]
Modeling of the dispersion of liquid? (3)

- Closure of the liquid transfer at contact points:

\[\dot{m} = h_1 \left(\langle p_{l_2} \rangle^{l_2} - \langle p_{l_1} \rangle^{l_1} \right) \]

- Assuming capillary pressure effects at contact points

\[P_{c_i} (S_i) = \langle p_g \rangle^g - \langle p_{l_i} \rangle^{l_i} \]

\[\dot{m} = h_1 (P_{c_2} (S_{l_2}) - P_{c_1} (S_{l_1})) \]

- Brooks and Corey relation

\[P_{c_i} = P_{c_0} S_i^{0.5} \]
Test case (1)

- Variation of the liquid exchange coefficient

| h_1 | 0.1 | 1 | 10 |

- 9 injection points

\[
K_{ll_i}^+ = K_{ll_i}^* \begin{pmatrix}
0 & 0 & 0 \\
0 & \cos^2 \theta^*_i \sin^2 \theta^*_i & \pm \cos \theta^*_i \sin \theta^*_i \\
0 & \pm \cos \theta^*_i \sin \theta^*_i & \cos^2 \theta^*_i \sin^2 \theta^*_i
\end{pmatrix} \quad i = 1, 2
\]

\[
K_{ll_i}^* = K_{ll_i} \begin{pmatrix}
\cos^2 \theta^*_i \sin^2 \theta^*_i & 0 & \pm \cos \theta^*_i \sin \theta^*_i \\
0 & 0 & 0 \\
\pm \cos \theta^*_i \sin \theta^*_i & 0 & \cos^2 \theta^*_i \sin^2 \theta^*_i
\end{pmatrix} \quad i = 1, 2
\]
Test case (2) - Regimes of dispersion
Perspectives

■ Accurate closure of the effective parameters

 • Numerical modeling at the local-scale (VOF)

■ Impact of the coupled system on the dispersion?

■ Closure of the liquid exchange term \hat{m}

 • Numerical modeling at the micro-scale (quantification of the liquid exchange)
Perspectives

- Accurate closure of the effective parameters
 - Numerical modeling at the local-scale (VOF)

- Impact of the coupled system on the dispersion?

- Closure of the liquid exchange term \dot{m}
 - Numerical modeling at the micro-scale (quantification of the liquid exchange)
Perspectives

- Accurate closure of the effective parameters
 - Numerical modeling at the local-scale (VOF)

- Impact of the coupled system on the dispersion?

- Closure of the liquid exchange term \hat{m}
 - Numerical modeling at the micro-scale (quantification of the liquid exchange)
Annexe - Calide experiment - Retention

(a) Gas retention S_g as a function of the gas phase velocity
Closures for the viscous terms - based on experimental results

\[
K_{ll} = K_0 S_l^3 \quad ; \quad K_{lg} = 5.5 \frac{\mu_g}{\mu_l} \frac{S_l^2}{(1 - S_l)} \\
K_{gg} = K_0 (1 - S_l)^4 \quad ; \quad K_{gl} = \frac{\mu_l}{\mu_g} \frac{K_{gg} K_{lg}}{K_{ll}}
\]

Closures for the viscous terms - based on experimental results

\[
F_{ll} = \frac{\rho_l}{\mu_l} K \langle u_l \rangle \quad ; \quad F_{lg} = K_{lg} \frac{(1 - S_l)^3}{(1 - S_l)^3 + S_l^n} \\
F_{gg} = \frac{\rho_g}{\mu_g} K \langle u_g \rangle \quad ; \quad F_{gl} = f_{lg} (1 - S_l)^6
\]
Annexe - Calide experiment - Effective parameters (1)

(a) Intrinsic and couples permeabilities - Experimental results (Clavier)
Annexe - Calide experiment - Effective parameters (2)

(b) \(\langle u_L \rangle = 0.02 \ (Re = 128) \)
Annexe - air / water system in packings - Effective parameters (1)

(a) Viscous permeabilities K^*
Annexe - air / water system in packings - Effective parameters (2)

(b) Inertial correction terms F