Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 15687

To cite this version: Jimenez-Gonzalez, José Ignacio and Brancher, Pierre and Martinez-Bazan, Carlos Modal and non-modal evolution of perturbations for parallel round jets, (2015) In: 68th Annual Meeting of the APS Division of Fluid Dynamics, 22 November 2015 - 24 November 2015 (Boston, United States)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Modal and non-modal evolution of perturbations for parallel round jets

J. I. Jiménez-González,1,a) P. Brancher,2,3 and C. Martínez-Bazán1

1Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
2INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Université de Toulouse, Allée Camille Soula, F-31400 Toulouse, France
3CNRS, IMFT, F-31400 Toulouse, France

The present work investigates the local modal and non-modal stability of round jets for varying aspect ratios \(\alpha = R/\theta \), where \(R \) is the jet radius and \(\theta \) the shear layer momentum thickness, for Reynolds numbers ranging from 10 to 10,000. The competition between axisymmetric (azimuthal wavenumber \(m = 0 \)) and helical (\(m = 1 \)) perturbations depending on the aspect ratio, \(\alpha \), is quantified at different time horizons. Three different techniques have been used, namely, a classical temporal stability analysis in order to characterize the unstable modes of the jet; an optimal excitation analysis, based on the resolution of the adjoint problem, to quantify the potential for non-modal perturbation dynamics; and finally an optimal perturbation analysis, focused on the very short time transient dynamics, to complement the adjoint-based study. Besides providing with the determination of the critical aspect ratio below which the most unstable perturbations switch from \(m = 0 \) to \(m = 1 \) depending on the Reynolds number, the study shows that perturbations can undergo a rapid transient growth. It is found that helical perturbations always experience the highest transient growth, although for large values of aspect ratio, this transient domination can be overcome by the eventual emergence of axisymmetric perturbation when more exponentially unstable. Furthermore, the adjoint mode, which excites optimally the most unstable mode of the flow, is found to coincide with the optimal perturbation even for short time horizons, and to drive the transient dynamics for finite times. Therefore, the adjoint-based analysis is found to characterize adequately the transient dynamics of jets, showing that a mechanism equivalent to the Orr one takes place for moderate to small wavelengths. However, in the long wavelength limit, a specific mechanism is found to shift the jet as a whole in a way that resembles the classical lift-up effect active in wall shear flows.

a)Electronic mail: jignacio@ujaen.es