OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Reconfigurable navigation receiver for space applications

Dion, Arnaud. Reconfigurable navigation receiver for space applications. PhD, Réseaux, Télécoms, Systèmes et Architecture, Institut Supérieur de l'Aéronautique et de l'Espace, 2014, 128 p.

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
11MB

Official URL: https://depozit.isae.fr/theses/2014/2014_Dion_Arnaud.pdf

Abstract

The orbit of a satellite around the earth is constantly disturbed by various factors, such as variations in the gravitational field and the solar wind pressure. The drift of the satellite position can compromise the mission, and even lead to a crash or a fall in the atmosphere. The station-keeping operations therefore consist in performing an accurate measurement of the satellite trajectory and then in using its thrusters to correct the drift. The conventional solution is to measure the position with the help of a ground based radar. This solution is expensive and does not allow to have the satellite position permanently: the trajectory corrections are therefore infrequent. A positioning and autonomous navigation system using constellations of navigation satellites, called Global Navigation Satellite System (GNSS), allows a significant reduction in design and operational maintenance costs. Several studies have been conducted in this direction and the first navigation systems based on GPS receivers, are emerging. A receiver capable of processing multiple navigation systems, such as GPS and Galileo, would provide a better service availability. Indeed, Galileo is designed to be compatible with GPS, both in terms of signals and navigation data. Continuous knowledge of the position would then allow a closed loop control of the station keeping. Initially, we defined what the specifications of a multi-mission space receiver are. Indeed, the constraints on such a receiver are different from those for a receiver located on the surface of the Earth. The analysis of these constraints, and the performance required of a positioning system, is necessary to determine the specifications of the future receiver. There are few studies on the subject. Some of them are classified; others have, in our view, an analytical bias that distorts the determination of specifications. So we modeled the system: GNSS and receivers satellite orbits, radio frequency link. Some parameters of this link are not given in the specification or manufacturers documents. Moreover, the available theoretical data are not always relevant for realistic modeling. So we had to assess those parameters using the available data. The model was then used to simulate various scenarios representing future missions. After defining analysis criteria, specifications were determined from the simulation results. Calculating a position of a satellite navigation system involves three main phases. For each phase, there are several possible algorithms, with different performance characteristics, the circuit size or the computation load. The development of new applications based on navigation also drives the development of new adapted algorithms. We present the principle for determining a position, as well as GPS and Galileo navigation signals. From the signal structure, we explain the phases of the demodulation and localization. Through the use of GPS and Galileo constellations, standard algorithms achieve the performance required for space applications. However, these algorithms need to be adapted, thus some parts were specifically designed. In order to validate the choice of algorithms and parameters, we have simulated the various operating phases of the receiver using real GPS signals. Finally, impact and prospects are discussed in the conclusion.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Laboratory name:
Funders:
Institut Supérieur de l'Aéronautique et de l'Espace - Thales Alenia Space
Research Director:
Boutillon, Emmanuel
Statistics:download
Deposited By: Arnaud Dion
Deposited On:28 Sep 2018 13:38

Repository Staff Only: item control page