OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers

Bauerheim, Michaël and Nicoud, Franck and Poinsot, Thierry Progress in analytical methods to predict and control azimuthal combustion instability modes in annular chambers. (2016) Physics of Fluids, 28 (2). 021303. ISSN 1070-6631

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: http://dx.doi.org/10.1063/1.4940039

Abstract

Longitudinal low-frequency thermoacoustic unstable modes in combustion chambers have been intensively studied experimentally, numerically, and theoretically, leading to significant progress in both understanding and controlling these acoustic modes. However, modern annular gas turbines may also exhibit azimuthal modes, which are much less studied and feature specific mode structures and dynamic behaviors, leading to more complex situations. Moreover, dealing with 10–20 burners mounted in the same chamber limits the use of high fidelity simulations or annular experiments to investigate these modes because of their complexity and costs. Consequently, for such circumferential acoustic modes, theoretical tools have been developed to uncover underlying phenomena controlling their stability, nature, and dynamics. This review presents recent progress in this field. First, Galerkin and network models are described with their pros and cons in both the temporal and frequency framework. Then, key features of such acoustic modes are unveiled, focusing on their specificities such as symmetry breaking, non-linear modal coupling, forcing by turbulence. Finally, recent works on uncertainty quantifications, guided by theoretical studies and applied to annular combustors, are presented. The objective is to provide a global view of theoretical research on azimuthal modes to highlight their complexities and potential.

Item Type:Article
Additional Information:Thanks to AIP Publishing. The definitive version is available at http://scitation.aip.org The original PDF of the article can be found at Physics of Fluids website : http://scitation.aip.org/content/aip/journal/pof2/28/2/10.1063/1.4940039
HAL Id:hal-01269821
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Other partners > Université de Montpellier (FRANCE)
Laboratory name:
Funders:
European Commission
Statistics:download
Deposited By: Thierry POINSOT
Deposited On:05 Feb 2016 11:29

Repository Staff Only: item control page