ABSTRACT: Flood phenomena become an unusual phenomenon occurring in the world and causing serious human and material damage. One way to protect urban zones from river floods is to equip the river with flood control area used as reservoirs in order to reduce the velocity of water and to attenuate the flood wave. The work presented in this paper concerns the supervisory control of such an equipped river. The supervisory scheme consists in four blocks connected to the river process: a Supervisory Control and Data Acquisition block, a Dynamic Parameterization block, a Diagnosis-Decision-Correction block and a Management Objectives and Constraints Generation block. The proposed method is based on a dynamic method combining a reduced transportation network and a temporized matrix from which the water volumes to be stored or released in time are calculated. It makes possible the water storage and release adapted to each river flood scenario, and preservation of agriculture in these floodplains. It takes into account the variation of the time delay with the flow without any modification in the structure of the network.

KEYWORDS: Water systems management, Supervisory control, Transportation networks, Time delay, Flood control.

1 INTRODUCTION

Flood is an unusual phenomenon all over the world. Extreme rainfall events become more frequent and the induced damages more severe. Recently, at the end of April 2014, a rainstorm caused floods in the North of Florida, as well as in the east of the United States, rains reached up to 550 millimeters of water. Roads were cut, a street collapsed in Baltimore, flights were delayed, hundred of people have been evacuated, power failure affected more than 28000 homes. This disaster caused the loss of 35 lives (source AFP). Flooding due to excessive rains can cause significant human and material damages around the world.

One way to prevent these flood problems is to equip the river with flood control area used as reservoirs. The reservoirs are emptying with water in order to reduce the water velocity in the river and to attenuate the flood wave. Various research works have been proposed in order to reduce flood peaks and volumes involving linear programming (Needham et al., 2000), folded dynamic programming (Nagesh Kumar et al., 2009), hybrid analytic/rule-based approach (Karbowski et al., 2005) for example. Most of these methods do not allow controlling the duration of water storage in the reservoir, the storage and release dates ... In order to improve the managers’ decisions during these abrupt climatic phenomena, optimization techniques were proposed such as linear programming (Karamouz et al., 2003), fuzzy optimization (Fu, 2008; Cheng and Chau, 2001), stochastic optimization (Ratnayake and Harboe, 2007) and multi-objective optimization (Chuntian and Chau, 2002). Rivers are equipped with sensors and actuators and Supervisory Control and Data Acquisition systems (SCADA) are developed in order to improve their control. Such SCADA systems are used to collect data from sensors, communicate with operators through a Human Machine Interface, and send control values to actuators in many kind of systems such as irrigation canals (Figueiredo et al., 2013; Puerto et al., 2013; Pfitscher et al., 2012), inland navigation networks (Duvieila et al., 2013), or energy management (Mora et al., 2012); network vulnerabilities of such systems are studied in (Amin et al., 2013a,b).

In order to manage the water volumes in case of flood in river area, a supervisory control scheme is proposed in this paper. The structure of the paper is as follows. Section 2 describes the proposed scheme which includes water storage and release in the reservoirs and the variation of time delay with discharge. The effectiveness of the proposed supervisory scheme
is shown for different flood situations on a simulated river system in section 3. Finally, conclusion is given and some future works are suggested.

2 SUPERVISORY CONTROL SCHEME

2.1 General Scheme

In order to manage the water volumes in case of flood arising in river area, a supervisory control scheme depicted in Figure 1 is proposed. The process is a river system along which \(n_r \) reservoirs are distributed. These reservoirs, denoted \(FCR_r \) (flood control reservoir) are floodplains provided with a controlled gate \(G_r, r = 1, \ldots, n_r, \) and are used to absorb the flood. The time delay, \(\tau_r \), from the gate \(G_r \) to the following gate \(G_{r+1} \) depends on the flow discharge. The gate opening should be computed in order to maintain the river discharge under a predefined flow value called the attenuation flow. Thus the control of discharges leads to limit the level of the river.

The SCADA system is connected to the river process. It transmits the sensors’ values to the Diagnostic-Decision-Correction and the Dynamic Parameterization blocks, and receives the gate opening values in order to send them to the process. The measurements considered herein are levels and discharges.

The Diagnostic-Decision-Correction block (DDC) permits the determination of the gate opening setpoints. It is composed of a transportation network which diagnose the process state, depending on the flow in the river, decide if a correction must be carried out and execute it. The transportation network includes time delays, moreover, if the time delays vary, it is not necessary to change the network structure (no need to add node or arc, only network parameters are modified); as described in the next section (section 2.2). Setpoints values are adapted in order to be understood by the SCADA system.

The Dynamic Parameterization (DP) block provides the DDC block with all the necessary dynamic characteristics such as time delays.

The Management Objectives and Constraints Generation block supplies the DDC and DP blocks with management constraints and rules such as the thresholds, the attenuation flow value, the priority parameters.

2.2 Network With Time Delay

The river with FCR is modeled with a transportation network including time delay. In previous work (Nouasse et al., 2012), we firstly proposed the use of a static transportation network, where time delay where neglected. Because of the importance of the flow delay in the river, the method was improved to include time delay (Nouasse et al., 2013a) and storage and release operations for reservoirs (Nouasse et al., 2013b). The method is composed of a transportation network \(G \) and a Temporization Matrix \((TM) \), as described in Figure 2. In these works, time delays were constant during the simulation; in the present paper, the method is proved to be efficient with delay varying during the simulation.

The objective of the method is to maintain the flow under a predefined attenuation flow denoted \(Q_{\text{lam}} \). The attenuation flow is a flow threshold under which the river flow should remain as, expected by the river system manager. Moreover, in order to protect agriculture and to be able to control a new flood episode, when the reservoirs are not empty, and when the discharge level in the river is lower than the attenuation threshold, the stored water can be released. For this purpose a threshold, \(Q_{\text{do}} \), is defined as the discharge level under which the water is released from the reservoir. In the case of release, gates are opened in a way that the discharge level in the river remains under the attenuation threshold \(Q_{\text{lam}} \).

In order to determine the optimal attenuation flow that satisfies the management objectives and the flood occurring case, we formulated the problem as a Min-Cost-Max-Flow problem. The cost function to minimize is subject to the constraints of flow conservation and minimal and maximal capacities in the network. The network \(G \) enables water storage and release from reservoirs. In order to include variable transfer time in the network without oversizing it, the values of delayed flow are stored in the \(n \times 2n_r \) \(TM \) matrix. Each column represents the evolution of a gate or a FCR, and each line represents an instant of the evolution of the state of the system,
at each $kT_c, k = 0, \cdots, n$, in the horizon H_f, with $H_f = n \times T_c, n \in \mathbb{N}^+$. The network $G = \{N, A\}$ where N is a set of $3n_G + 2$ nodes defined as follows, with $r = 1, \cdots, n_G$:

- The node G_r represents the gate G_r;
- The node RD_r is a release decision node;
- The node RES_r is a reservoir node;
- The node S_0 is a source node corresponding to the fictive entry point of the system;
- The node P_0 is a sink node corresponding to the fictive exit point of the system.

The arcs belonging to the set A between the nodes of N are valued, each value is between a maximum capacity and a minimum capacity written respectively in blue and red in Figure 2. The arc value at kT_c is computed using an optimization algorithm as detailed in the following. The arcs describe the following connections:

- The arc between the node S_0 and the node $RD_r, r = 1, \cdots, n_G$, represents the water volume already stored in the reservoir linked to it. Its maximum capacity is Max_{RES_r}, the maximum storage capacity of the reservoir, which depends on the maximum value of the peak flow rate of the flood (Q_{peak}). Its minimum capacity is $Stock_{RES_r}$, and it corresponds to the amount of water already present in the reservoir.
- The arc between the node RD_r and the node $G_r, r = 1, \cdots, n_G$, represents the draw-off flow leaving the reservoir. Its maximum capacity is denoted λ_r.
- The arc between the node RD_r and $RES_r, r = 1, \cdots, n_G$, represents the water volume not released and remaining in the reservoir at the end of the concerned period. Its maximum capacity is $Stock_{RES_r}$, the amount of water already present in the reservoir.
- The arc between the node S_0 and the node G_r, $r = 2, \cdots, n_G$, takes into account the discharge upstream from the gate G_r in the system. Its maximum capacity is Q_{peak}.
- The arc between the node G_r and the node RES_r, connects the gate with its reservoir. It represents the flow leaving the river through the gate G_r towards the reservoir, i.e. the stored water. Its maximum capacity is denoted ν_r.
- The arc between the node G_r and the node P_0, $r = 1, \cdots, n_G - 1$, represents the flow transferred from the gate G_r to the next gate G_{r+1}. This discharge is stored in the column of TM associated to the gate G_{r+1} at line $k + kr$, with $kr = \frac{kT_c}{T_f}$. Its maximum capacity is Q_{peak}.
- The arc between the node G_{n_G} and the node P_0, corresponds to the flow-rate downstream from the exit point of the system. Its maximum capacity is Q_{peak}.
- The arc between the node RES_r and the node P_0, $r = 1, \cdots, n_G$, represents the total volume of water remaining in the reservoir. It respects transportation network conservation flow rules. Its maximum capacity is Max_{RES_r}, its minimum capacity is $Stock_{RES_r}$.

In Figure 2, the cost of each arc is written in black. In order to limit overflow downstream, the cost of the $G_{n_G}P_0$ arc is set to a high value, here 100. Similarly, the cost of the G_rP_0 arcs ($r = 1, \cdots, n_G - 1$) are set to a value lower or equal to the $G_{n_G}P_0$ arc cost, here 100. In order to release water only in the case where there is no overflow risk, the costs of the RD_rRES_r arcs ($r = 1, \cdots, n_G$) were set to a value higher than the cost value of the $G_{n_G}P_0$ arc, here 1000. Finally, the three reservoirs are considered to have a similar role, thus, all other costs were set equal to 1.

The Flood-Attenuation algorithm, described in algorithm 1, permits to determine the gate opening setpoint values. The computation of the setpoints is based on the arc values. Firstly, the temporization matrix is initialized. Thereafter, at each k, the network and the temporization matrix are actualized (see algorithm 2 and algorithm 3), the optimal flow is
Algorithm 1: Flood Attenuation

input:
\[G \] the network
\[n = \left\lfloor \frac{N}{F} \right\rfloor + 1 \] the number of samples
\[nG \] the number of gates and FCR in the system
\[k_r = \left\lfloor \frac{F}{n} \right\rfloor, r = 1, \ldots, nG - 1 \]
\[Q_{input}(k) \] the flow of flood at \(kT_c, k = 1 \cdots n \)
\[Q_{lam} \] the attenuation flow

output:
\[G \] the network
\[TM \] the \(n \times 2nG \) temporization matrix
\(\varphi^* \) the optimal flow for each arc in \(G \)

begin
% Initialization phase one
for \(k = 1 \) to \(n \) do
 \[TM(k, 1) \leftarrow Q_{input}(0) \]
end

% Initialization phase two
for \(r = 1 \) to \(nG - 1 \) do
 for \(k = 1 \) to \(k_r - 1 \) do
 \[TM(k, r + 1) \leftarrow \min(Q_{input}(0), Q_{lam}) \]
 end
end

while \((k \leq n) \) do
 \[Actualize_Network(G, k, TM) \]
 \[\varphi^*(k) \leftarrow Compute_Optimal_Flow(G, k) \]
 \[Actualize_Matrix(\varphi^*(k), k, TM) \]
 \[k \leftarrow k + 1 \]
end

Algorithm 2: Actualization Network

input:
\[TM \] the \(n \times 2nG \) temporization matrix
\[G \] the network
\[nG \] the number of gates and RES in the system
\[k \] the iteration number
\[Q_{lam} \] the attenuation flow
\[Q_{do} \] the draw-off discharge threshold
\[Max_RES \] the maximum storage capacity of \(RES_r \)

output:
\[G \] the network

begin
for \(r = 1 \) to \(nG \) do
 if \(TM(k, r) \geq Q_{lam} \) then
 \[\gamma_r \leftarrow 1, \mu_r \leftarrow 0 \]
 else
 if \(TM(k, r) < Q_{do} \) then
 \[\mu_r \leftarrow 1, \gamma_r \leftarrow 0 \]
 else
 \[\mu_r \leftarrow 0, \gamma_r \leftarrow 0 \]
 end
end

for \(r = 1 \) to \(nG \) do
 \[Q(k) \leftarrow 0 \]
 for \(r = 1 \) to \(nG \) do
 \[Q(k) \leftarrow Q(k) + TM(k, r) \]
 end
 for \(r = 2 \) to \(nG \) do
 \[\alpha_r \leftarrow TM(k, r) \]
 end
 for \(r = 1 \) to \(nG \) do
 \[\nu_r \leftarrow \min(max(0, TM(k, r) - Q_{lam}), max(0, Max_RES - TM(k, nG + r))] \times \gamma_r \]
 \[Stock_RES \leftarrow TM(k, nG + r) \]
 \[\lambda_r \leftarrow \min(Stock_RES, max(0, Q_{lam} - TM(k, r))] \times \mu_r \]
 end
end

computed. In order to compute the optimal flow, the Min cost Max flow problem resolution for this network is done, using a Linear Programming formulation (as described in (Nouasse et al., 2012)), according to our management objectives, \(\varphi^*_{xy}(k) \) is the obtained optimal flow from node \(x \) to node \(y \) in the network \(G \) at \(kT_c \); thus, at \(kT_c \), we can derive the gate \(G_r \) opening setpoint value which is equal to \(\varphi^*_{G, RES}(k) \) in the storage case and to \(\varphi^*_{RD, G}(k) \) in the release case. During the phase one of the initialization of the Flood-Attenuation algorithm, the first column of \(TM \) matrix is set to the value of the upriver flow at each \(kT_c, k = 1, \cdots, n \), which is the flow upstream from the first gate \(G_1 \). The initialization phase two allows us to introduce the flow values for all the gates \(G_r, r = 2, \cdots, nG \) during the non-stationary phase i.e. before \(k = k_{nG - 1} \), with \(k_{nG - 1} = \left\lfloor \frac{nG - 1}{F} \right\rfloor \). We chose in this case to set these upstream discharges to the upriver flow except when it is higher than the attenuation flow. In the algorithm 2, \(Q(k) \) is the flow rate entering the network at \(kT_c \). It is equal to the sum of flows entering the gates added to the sum of the discharge corresponding to the water volumes already stocked in all the reservoirs. In order to choose which strategy to implement, we introduced management parameters \(\mu_r \) and \(\gamma_r \). The storage phase and release phase cannot occur at the same time for each gate, thus parameters values are set according to the following equation:

\[
\begin{align*}
\gamma_r &= 1, \mu_r = 0 & \text{if water storage} \\
\gamma_r &= 0, \mu_r = 1 & \text{if water release} \\
\gamma_r &= 0 & \text{if no water storage} \\
\mu_r &= 0 & \text{if no water release}
\end{align*}
\]

The network \(G \) is updated at each \(kT_c, k = 1, \cdots, n \). The network parameters values at \(k-1 \) such as the adjacancy matrix, the costs and the constraints vector
Algorithm 3: Actualization TM Matrix

input :
- TM the $n \times 2nG$ temporization matrix
- nG the number of gates and FCR in the system
- k the iteration number
- $k_r = \left\lfloor \frac{k}{\tau_c} \right\rfloor$, $r = 1, \cdots, nG - 1$
- $\varphi^\ast(k)$ the optimal flow in G at kT_c

output:
- TM the $n \times 2nG$ temporization matrix

begin
\begin{algorithmic}
\State for $r = 1$ to $nG - 1$ do
\State $TM(k + k_r, r + 1) \leftarrow TM(k + k_r - 1, r + 1) + \varphi^\ast_{G_r, P_0}(k)$
\end{algorithmic}
\begin{algorithmic}
\State for $r = 1$ to nG do
\State $TM(k + 1, nG + r) \leftarrow TM(k, nG + r) + \varphi^\ast_{RES_r, P_0}(k)$
\end{algorithmic}
end

3 IMPLEMENTATION AND RESULTS

3.1 Implementation

In order to evaluate the efficiency of the proposed model, a simulation for several cases of flood was done. A test case river was used and the implementation of this river was performed by using a 1D-2D coupled numerical model according to the description given in (Garcia-Navarro et al., 2008; Morales-Hernandez et al., 2012; Morales-Hernández et al., 2013). 1D and 2D models are formulated using a conservative upwind cell-centred finite volume scheme. The discretization was based on cross-sections for the 1D model and with triangular unstructured grid for the 2D model. Coupling techniques were based on mass and momentum conservation. The cross section geometry and topography was derived from the Ebro river, however, the shape of the river was simplified. As summarized in Figure 3, the process and SCADA systems were replaced by a 1D-2D coupled simulator (developed by García-Navarro et al., 2008). In the 1D-2D coupled simulator, each gate is modeled considering that the flow discharge that crosses the gate is governed by the difference between the water level in both side of the gate. The 1D-2D coupled simulator entries are the values of the gate opening thus, the Adaptation Block consisted in the computation of the gate opening values from the optimal flow, by means of a static inversion of the free flow open channel equations (Litrico et al., 2008). The Dynamic Parameterization block was used in order to compute the time delays at each kT_c ($k = 1, \cdots, n$). The transfer time, τ_r, from the gate G_r to the gate G_{r+1}, $r = 1, \cdots, nG$ was approximated by the following equation, (see Karamouz et al., 2003) for exam-
Algorithm 4: Actualization TM and Simulator

\begin{verbatim}
input :
nG the number of gates and FCR in the system
TM the n × 2nG temporization matrix
k the iteration number
k_r = \lceil \frac{T_k}{T_c} \rceil, r = 1, \ldots, nG - 1
V_{RES_r}^r(k) the measured amount of water stored in the RES_r at kT_c
Q_{RES_r}^r(k) the measured discharge from gate G_r to RES_r at kT_c
G the network

output:
TM the n × 2nG temporization matrix

begin
for r = 1 to nG - 1 do
TM(k + k_r, r + 1) ←
TM(k + k_r, -1, r + 1) + max(0, \varphi_{G_r,RES_r}^r(k)) +
max(0, \varphi_{G_r,RES_r}^r(k) - Q_{RES_r}^r(k))
end
for r = 1 to nG - 1 do
TM(k + 1, nG + r) ←
TM(k, nG + r) + V_{RES_r}^r(k)
end
\end{verbatim}

(2)\) \[\tau_r = \frac{Q_{G_r}}{S \cdot d_{G_r, G_{r+1}}} \]

where \(Q_{G_r} \) is the discharge measured at gate \(G_r \), \(S \) is the wetted cross section, and \(d_{G_r, G_{r+1}} \) is the distance traveled from \(G_r \) to \(G_{r+1} \). In order to evaluate time delays, methods such as the ones developed in (Romera et al., 2013) or in (Bautista and Clemmens, 2015) can also be used. The values measured with the simulator were introduced in the algorithm for actualization of temporized matrix, as described in algorithm 4.

3.2 Performance criteria

The flood wave attenuation can be defined as the decrease in the downstream peak flow, due to the attenuation of the flood (Bedient, P. B. et al., 2013). In order to evaluate the performances of the proposed flood attenuation method, three indicators were defined: the attenuation rate (AR), the rate of filling (RF) and the attenuation wave rate (AWR). These measures allow us to evaluate how we prevent downstream flood risk by using the proposed method. All these measures are computed over the time horizon \(H_f \), i.e. for \(k = 0, \ldots, n \); and we denote \(Q_{out} \) the downstream flow. The AR permits to measure the difference between the attenuation threshold objective and the obtained attenuation threshold. It is defined as the ratio between the mean effective attenuation flow, \(Q_{mea} \), and the predefined attenuation flow \(Q_{lam} \), as given in equation (3) and equation (4).

\[AR = \frac{Q_{mea}}{Q_{lam}} \quad (3) \]

\[\begin{cases}
if \exists k | Q_{out}(k) > Q_{lam} \quad Q_{mea} = \frac{\text{mean} \quad Q_{out}(k)}{Q_{out}(k)} \\
else \quad Q_{mea} = \max_{k=1 \cdots n} Q_{out}(k)
\end{cases} \quad (4) \]

Another estimator of the attenuation capacity is the AWR which compares the case where the gates are always closed to the case in which a strategy is involved and is expressed by equation (5).

\[AWR = \frac{\sum_{Q_{out}(k) > Q_{lam}} Q_{out}(k) - \sum_{Q_{out}(k) > Q_{lam}} Q_{out}(k)}{\sum_{Q_{out}(k) > Q_{lam}} Q_{out}(k)} \quad (5) \]

The downstream flow when the gates are closed is denoted \(Q_{cg} \). Finally, RF indicates the water volume storage efficiency. It is computed as the ratio between the water volume stored in all the reservoirs, \(V_s \), and the estimated water volume to be stored, \(V_{lam} \), as indicated in equation (6), and assuming that \(V_{RES_r} \) is the maximum volume stored in the reservoir \(RES_r \), \(r = 1, \ldots, nG \), during the time horizon \(H_f \). \(V_{lam} \) is approximated by the trapezoidal numerical integration of the input flow, \(Q_{input} \), above \(Q_{lam} \).

\[RF = \frac{V_s}{V_{lam}}, \quad V_s = \sum_{r=1}^{nG} V_{RES_r} \quad (6) \]

3.3 Results

Simulation were done within the horizon \(H_f = 86400s \) corresponding to 24 hours, \(T_c = 100s \) thus \(n = 864 \). The simulated river was equipped with \(nG = 3 \) flood control reservoirs, each one controlled by a gravitational gate.

The first case studied is a flood episode with one peak flow of 790.31 m³/s occurring at \(k = 330 \) i.e. around 9 hours after the beginning of the simulation. The values of attenuation and draw-off flows were set to \(Q_{lam} = 675 m³/s \) and \(Q_{draw} = 600 m³/s \approx 90\% Q_{lam} \). For this one peak flood, the measured time delays varied between 11T_c and 16T_c as illustrated in Figure 4. Thus in order to compare the results obtained when the strategy involved constant time delay or varying time delay, we realized simulation for constant time delays underestimated or overvalued: \(\tau_1 = \tau_2 = 10T_c \), \(\tau_1 = \tau_2 = 11T_c \), \(\tau_1 = \tau_2 = 14T_c \), \(\tau_1 = \tau_2 = 16T_c \), \(\tau_1 = \tau_2 = 18T_c \). In Figure 5, the \(Q_{input} \) value is given in red and results obtained for the four following cases
are compared. Case one, the gates always open (unregulated reservoirs) is given in green. Case two, the proposed strategy applied with constant time delays: $\tau_1 = \tau_2 = 11T_c$ is given in blue. Case three, the proposed strategy applied with constant time delays: $\tau_1 = \tau_2 = 16T_c$ is given in magenta. Case four, the proposed strategy applied with varying time delays, expressed as function of flow and computed thanks to the Dynamic Parameterization block is given in black.

When the gates are always open, the peak flood is reduced however, the discharge exceeds the Q_{lam} value. When time delays are computed, the Q_{out} curve is between the Q_{out} curves obtained for the time delays set to their variation interval bounds. In all these cases, the Q_{max} maximum value is given, and denoted Q_{max} in the second column of the Table 1. Without the use of flood control reservoirs the peak flow reaches $777.08m^3/s$, when the gates are always open, the peak flow reaches $690.39m^3/s$. When the proposed strategy is applied, the peak flow decreases and it is lower than the Q_{lam} value when the time delays are computed. When time delays are set to constant values, performance decreases, and we can conclude that it is preferred to overestimate the time delays.

![Figure 4](image-url) – τ_1 and τ_2 evolution for a 1-peak simulation with $Q_{lam} = 675m^3/s$ and $Q_{do} = 600m^3/s$.

![Figure 5](image-url) – Q_{input} and Q_{out} for a 1-peak simulation with $Q_{lam} = 675m^3/s$ and $Q_{do} = 600m^3/s$.

In the fourth illustrated cases, the water level inside the reservoirs is superimposed in Figure 7(a) for the gate G_1, in Figure 7(b) for the gate G_2 and in Figure 7(c) for the gate G_3. The water level inside the reservoir is represented in black and the water level in the river in front of the gates in red. The water levels are measured with regard to the river bed. In each Figure, the gate is first opened in order to store water, thereafter, during the phase when the discharge is between Q_{lam} and Q_{do}, the gate is closed and finally, the gate is opened in order to empty the reservoir.

The values of the performance criteria obtained in the studied cases are given in Table 1. Whatever the method used for the time delays computation, the ability to absorb the flood is increased when using the transportation network. Indeed, $AWR = 65.09\%$ when the time delays are underestimated, and $AWR = 90.45\%$ when the time delays are overvalued. When the time delays are set to the minimum value of their variation interval $AWR = 91.12\%$. When the time delays are computed or set to values high enough, $AWR = 100\%$, the peak flow is under the Q_{lam} value. Finally, $AWR = 36.83\%$ when the gates are not regulated. AR value is better if it is as close as possible to 100% which is the case for computed time delays. Finally, in all cases the water stored in the reservoir is upper than the estimated needed volume.

The gates’ opening height computed by the algorithm with varying time delays is given in blue in Figure 6(a) for the gate G_1, in Figure 6(b) for the gate G_2 and in Figure 6(c) for the gate G_3. The water level inside the reservoir is represented in black and the water level in the river in front of the gates in red. The water levels are measured with regard to the river bed. In each Figure, the gate is first opened in order to store water, thereafter, during the phase when the discharge is between Q_{lam} and Q_{do}, the gate is closed and finally, the gate is opened in order to empty the reservoir.

In the fourth illustrated cases, the water level inside the reservoirs is superimposed in Figure 7(a) for the gate G_1, in Figure 7(b) for the gate G_2 and in Figure 7(c) for the gate G_3. The always open gates case is given in green. The proposed strategy applied with constant time delays: $\tau_1 = \tau_2 = 11T_c$ is given in blue, with $\tau_1 = \tau_2 = 16T_c$ in magenta and with varying time delays in black. For each one of the three gates, the green curve is always above the other ones, which indicates that the needed reservoirs’ capacity is lower when using the regulation scheme. Moreover, the reservoirs are filled later in that case and the water remains less time in the reservoirs, thus the agri-

<table>
<thead>
<tr>
<th>Case</th>
<th>Q_{max}</th>
<th>AR%</th>
<th>AWR%</th>
<th>RF%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Gates</td>
<td>690.39</td>
<td>101.65</td>
<td>36.83</td>
<td>123.42</td>
</tr>
<tr>
<td>$\tau_c = 10T_c$</td>
<td>679.26</td>
<td>100.39</td>
<td>65.09</td>
<td>115.80</td>
</tr>
<tr>
<td>$\tau_c = 11T_c$</td>
<td>675.46</td>
<td>100.05</td>
<td>91.12</td>
<td>112.99</td>
</tr>
<tr>
<td>$\tau_c = 14T_c$</td>
<td>673.83</td>
<td>99.83</td>
<td>100</td>
<td>112.21</td>
</tr>
<tr>
<td>$\tau_c = 16T_c$</td>
<td>672.64</td>
<td>99.65</td>
<td>100</td>
<td>111.65</td>
</tr>
<tr>
<td>$\tau_c = 18T_c$</td>
<td>675.47</td>
<td>100.04</td>
<td>90.45</td>
<td>113.94</td>
</tr>
<tr>
<td>Varying τ</td>
<td>674.92</td>
<td>99.99</td>
<td>100</td>
<td>112.50</td>
</tr>
</tbody>
</table>

Table 1 – AR, AWR and RF values for the 1 peak scenario.
Gate opening and draw-off flows were set to begin of the simulation. The values of attenuates are always open. For this two peak flood, the peaks flood episode only this case and the case when computed time delay case, we compared for the two flood episode shown that results were better in the flood exists. Because results obtained in the one peak and so that the ability to absorb the second flood after the first peak and before the second one is set high enough to allow for a water draw-off from the reservoir. Moreover, Q_{do} is set high enough to allow for a water draw-off from the reservoir after the first peak and before the second one and so that the ability to absorb the second flood exists. Because results obtained in the one peak flood episode shown that results were better in the computed time delay case, we compared for the two peaks flood episode only this case and the case when gates are always open. For this two peak flood, the

The second case studied is a flood episode with two peak flows, the first one is of $838.79\text{m}^3/\text{s}$ occurring at $k = 324$ i. e. around 9 hours after the beginning of the simulation, the second is of $753.79\text{m}^3/\text{s}$ and occurs at $k = 570$ i. e. around 16 hours after the beginning of the simulation. The values of attenuation and draw-off flows were set to $Q_{lam} = 710\text{m}^3/\text{s}$ and $Q_{do} = 680\text{m}^3/\text{s} \approx 95\% Q_{lam}$. This case was proposed in order to evaluate the ability of the method to attenuate a second flood episode. Moreover, Q_{do} is set high enough to allow for a water draw-off from the reservoir after the first peak and before the second one and so that the ability to absorb the second flood exists. Because results obtained in the one peak flood episode shown that results were better in the computed time delay case, we compared for the two peaks flood episode only this case and the case when gates are always open. For this two peak flood, the

Figure 6 – Gate opening and water levels inside and outside FCR1

Figure 7 – Comparison of water levels inside the reservoirs for a 1-peak simulation with $Q_{lam} = 675\text{m}^3/\text{s}$ and $Q_{do} = 600\text{m}^3/\text{s}$.

Figure 8 – τ_1 and τ_2 evolution for a 2-peaks simulation with $Q_{lam} = 710\text{m}^3/\text{s}$ and $Q_{do} = 680\text{m}^3/\text{s}$.

measured time delays varied between $11T_c$ and $16T_c$ as illustrated in Figure 8.

In Figure 9, the Q_{input} value is given in red, the always open gates case in green. The proposed strategy applied with varying time delays is given in black. When the gate are always open, the peak flood is reduced however, the discharge exceeds the Q_{lam} value. When time delays are computed, the Q_{out} curve is between the Q_{out} curves obtained for the time delays set to their variation interval bounds. Without the use of flood control reservoirs the peak flow reaches $823.01\text{m}^3/\text{s}$ for the first wave and $746.19\text{m}^3/\text{s}$ for the second one. When applying the strategy, the peak flow reaches $703.65\text{m}^3/\text{s}$ for the first wave and

The cultural zone are better preserved. The water level curve in the case of computed time delays is between the curves obtained for the time delays set to their variation interval bounds.

![Gate opening and water levels for a 1-peak simulation with Qlam = 675m^3/s and Qdo = 600m^3/s.](image1)

![Gate opening and water levels inside and outside FCR2](image2)

![Gate opening and water levels inside and outside FCR3](image3)
Figure 9 – Q_{input} and Q_{out} for a 2-peak simulation with $Q_{\text{lam}} = 710 m^3/s$ and $Q_{\text{do}} = 680 m^3/s$.

712.56 m3/s for the second one. Applying the strategy allows the discharge to remain under the Q_{lam} value for the first wave and very close to it for the second wave. The values of the performance criteria computed for each case are given in Table 2. As in the first test, the ability to absorb the both flood waves is increased when using the proposed method. Indeed, for the first wave, $AWR = 100\%$ when gates are regulated whereas $AWR = 64.34\%$ when gates are not regulated. For the second wave $AWR = 91.90\%$ when the strategy is used whereas $AWR = 77.34\%$ when the gates remain open. Before the arrival of the second flood, we take advantage of the decrease of the water level in the river to release a certain amount of water from FCRs in the river. This enables us to better accommodate the second wave of flooding.

Table 2 – AR, AWR and RF values for the 2 peaks scenario in the two different cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>AR</th>
<th>AWR</th>
<th>1st pic</th>
<th>2nd pic</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Gates</td>
<td>100.76</td>
<td>64.34</td>
<td>77.34</td>
<td>103.17</td>
<td></td>
</tr>
<tr>
<td>Varying τ</td>
<td>100.16</td>
<td>100</td>
<td>91.90</td>
<td>99.07</td>
<td></td>
</tr>
</tbody>
</table>

4 CONCLUSION

In this paper, we propose a supervisory control scheme for the management of a river section in a flood situation. The Diagnosis-Detection-Correction block is based on a transportation network model including time delay. It permits to account for the variation of time delays without any modification in the network structure. The results of the connection between the method and the 1D-2D-coupled river simulator were displayed, highlighting the benefits of the strategy. The proposed simulated case permitted to attest the feasibility of including varying time delays in the network. Results are expected to be most obvious when considering a more extended network with longer delays. The strategy consists of two phases: water storage and water release. The storage phase keeps the flow below the attenuation discharge threshold imposed: the flood is attenuated, and the draw-off phase, enables us to preserve the floodplain. The strategy can be used in order to estimate the capability of river systems equipped with flood control reservoirs to control floods. One of the most important problem to be studied, beyond quantitative flood management, is the quality of water in the river and in the reservoirs. Future research will focus on the integration of pollution problems into the strategy.

ACKNOWLEDGMENTS

The authors want to thank Confederación Hidrográfica del Ebro for providing the case study used in this paper as well as for sharing their hydrological management expertise, Fluid Mechanics, LIFTEC-EINA, University of Zaragoza for providing the 1D-2D coupled simulator.

REFERENCES

