Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 14410

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Macroscopic regime transition of a non-Newtonian fluid through porous media

F. Pierre¹,³,* , Y. Davit¹,², R. de Loubens³ and M. Quintard¹,²

¹Université de Toulouse ; INPT, UPS ; IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France
²CNRS ; IMFT ; F-31400 Toulouse, France
³Total, CSTJF, Avenue Larribau, 64018 Pau, France

Jun 1, 2015
Overview

Introduction

Context

Keys concept
 Rheology
 Porous medium
 Permeability prediction

Numerical Results
 Numerical set up
 Numerical results

Model
 Transition’s model
 Full model

Conclusions
Introduction

Many applications fields,

- composites or paper manufacturing,
- blood flow,
- polymer injection,
- and others.

Fig : Pressure field in Clashach sandstone

Fig : Soulis2008, blood flow through an arterial tree

Fig : Use of polymer in EOR
Context

\[\mu = \mu_0 \quad \Rightarrow \quad \langle U \rangle = -\frac{K \cdot \nabla p}{\mu_0} \quad \Rightarrow \quad \langle U \rangle \propto \| \Delta p \| \quad \Rightarrow \quad (1) \]

\[\mu = \mu_\beta \dot{\gamma}^{n-1} \quad \Rightarrow \quad \langle U \rangle = -\frac{K(\| \langle U \rangle \| \cdot \nabla p)}{\mu_0} \quad \Rightarrow \quad \langle U \rangle \propto \| \Delta p \|^{1/n} \quad \Rightarrow \quad (2) \]

Fig : Non-Newtonian rheology

Fig : \(k \) versus \(\langle U \rangle \)
Context

- Literature: $\dot{\gamma}_{eq} = \alpha \frac{4\langle U \rangle}{\sqrt{8k/\epsilon}}$, with fitting parameter.
- Reservoir simulators: switch macroscopic law when $\dot{\gamma}_{eq} = \dot{\gamma}_c$.
- Our Goal: predict and understand the transition, $\langle U_c \rangle$.

Fig: Predict $\langle U_c \rangle \Rightarrow R_c$?
Time-independent fluids, no Bingham, Sochi2011. Common models are,
- plateau + power-law,
\[\mu = \begin{cases} \mu_0 & \text{if } \dot{\gamma} < \dot{\gamma}_c, \\ \mu_0 \left(\frac{\dot{\gamma}}{\dot{\gamma}_c} \right)^{n-1} & \text{else,} \end{cases} \]
\[(1) \]
- Carreau,
- generalized Newtonian.

Choice of plateau + power-law (and tried others).

This leads at a macro scale to,
\[\langle U \rangle \propto \begin{cases} \| \Delta p \| \\ \| \Delta p \|^{1/n} \end{cases} \]
\[(2) \]
Porous Medium

Keywords: universal, wide panel, pore to throat ratio (PTR).

<table>
<thead>
<tr>
<th>Porous Medium</th>
<th>ε</th>
<th>k₀</th>
<th>PTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Array name: A</td>
<td>0.72</td>
<td>1.1 × 10⁴</td>
<td></td>
</tr>
<tr>
<td>3D Stacks name: S</td>
<td>0.35</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3D Bentheimer name: B</td>
<td>0.18</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>3D Clashach name: C</td>
<td>0.13</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

Tab: Porous medium investigated (k₀ in Darcy unit, ■ for liquid)
Permeability prediction

(a) Workflow

Fig: Permeability prediction issues
Numerical set up

- Equations: \(0 = -\nabla p + \nabla \cdot [\nu(\dot{\gamma})(\nabla U + (\nabla U)^T)] \), \(\nabla \cdot U = 0 \).
- FVM with OpenFOAM.
- no-slip conditions, walls.
- Grid convergence study, 80 millions meshes, 80000 hours of CPU time, use of HPC.

Fig : Slice of grid over over S1

Fig : Grid convergence study
Numerical results - Two regimes

To quantify the transition, we define an dimensionless number, N,:

$$N = \frac{\langle U \rangle}{\langle U_c \rangle}.$$ \hspace{1cm} (3)

![Graph showing dimensionless permeability $k^* = k/k_0$ versus $\langle U \rangle$. Here $n = 0.75$ and $\dot{\gamma}_{lim} = 1 \text{s}^{-1}$. A1, ○ A2, ▲ B1, △ B2, ■ C1, □ C2, ◆ S1]
Numerical results - Varying n

Varying n: $k \propto \|\langle U \rangle\|^{1-n}$ is equivalent to $\langle U \rangle \propto \|\Delta p\|^{1/n}$.

Fig: Dimensionless permeability $k^* = k/k_0$ versus $\langle U \rangle$ for the C1 case. Rheological parameters: fixing $\dot{\gamma}_c$ and varying n.
Numerical results - Varying $\dot{\gamma}_c$

Varying $\dot{\gamma}_c$: $\langle U_c \rangle \propto \dot{\gamma}_c$. This leads to, $\langle U_c \rangle = \epsilon \times \dot{\gamma}_c \ell_{eff}$.

- Rheology: embedded in $\dot{\gamma}_c$.
- Topology: embedded in ℓ_{eff}.
- Use of ϵ.

Fig: Dimensionless permeability $k^* = k/k_0$ versus $\langle U \rangle$ for the C1 case. Rheological parameters: fixing n and varying $\dot{\gamma}_c$.
Numerical results - Microscopic Phenomenology

\[\langle U \rangle = 0.1\,cm.D^{-1} \]
\[\langle U \rangle = 8\,cm.D^{-1} \]
\[\langle U \rangle = 1\,cm.D^{-1} \]
\[\langle U \rangle = 22\,cm.D^{-1} \]

Fig: Viscosity fields at different \(\langle U \rangle \) for C1 case.

The non-Newtonian phenomena start in the pore throats and then extend in the larger pore (lower strain rate).
Non-Newtonian fluids through porous media

F. Pierre

Introduction

Context

Keys concept

Rheology

Porous medium

Permeability prediction

Numerical Results

Numerical set up

Numerical results

Model

Transition’s model

Full model

Conclusions

Numerical results - Microscopic Phenomenology

- Identify a critical pore throat volume with PDF.

<table>
<thead>
<tr>
<th>Media</th>
<th>ϵ</th>
<th>k_0</th>
<th>V_{PT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.72</td>
<td>1.1×10^4</td>
<td>8</td>
</tr>
<tr>
<td>A2</td>
<td>0.75</td>
<td>1.3×10^4</td>
<td>11</td>
</tr>
<tr>
<td>S1</td>
<td>0.35</td>
<td>33</td>
<td>2.9</td>
</tr>
<tr>
<td>S2</td>
<td>0.44</td>
<td>46</td>
<td>5.2</td>
</tr>
<tr>
<td>B1</td>
<td>0.18</td>
<td>1.92</td>
<td>1.8</td>
</tr>
<tr>
<td>B2</td>
<td>0.17</td>
<td>0.82</td>
<td>1.6</td>
</tr>
<tr>
<td>C1</td>
<td>0.13</td>
<td>0.27</td>
<td>0.4</td>
</tr>
<tr>
<td>C2</td>
<td>0.14</td>
<td>0.48</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tab : Medium description (k_0 in Darcy unit, and V_{PT} in % of volume)

Fig : PDF of $\dot{\gamma}^*$ at $N = 1$ for media C1.
Legend : $+$ for $\dot{\gamma}_c = 10^0 \, s^{-1}$, \times for $\dot{\gamma}_c = 10^1 \, s^{-1}$, $-$ for $\dot{\gamma}_c = 10^2 \, s^{-1}$
Transition’s model

- Our goal: predict $\langle U_c \rangle = \varepsilon \times \dot{\gamma}_c \ell_{eff}$.
- Equivalent to: predict ℓ_{eff}.
- Validation by comparison between $\langle U_c \rangle$ and $\langle U_{co} \rangle$.

Model for ℓ_{eff}:
- Use of $\sqrt{k_0}$. For Newtonian fluids, $\sqrt{k_0}$ is a pure topological parameter (even if PDE are needed). We have tried: $\sqrt{8k_0/\varepsilon}$, $\sqrt{32k_0/\varepsilon}$, $\sqrt{k_0/\varepsilon}$, $\sqrt{k_0}$.
- Use of volume or surface of the medium (V_{part}, V_{medium}, S_{part}), Li2011,Ozahi2008.

Best results using simply $\ell_{eff} = \sqrt{k_0}$. Leading to:

$$\langle U_c \rangle = \varepsilon \times \dot{\gamma}_c \sqrt{k_0}. \quad (4)$$
Non-Newtonian fluids through porous media

F. Pierre

Introduction

Context

Keys concept

Rheology

Porous medium

Permeability prediction

Numerical Results

Numerical set up

Numerical results

Model

Transition’s model

Full model

Conclusions

Fig : Dimensionless permeability $k^* = k / k_0$ versus $\langle U \rangle$. Here $n = 0.75$ and $\dot{\gamma}_{lim} = 1 s^{-1}$. A_1, A_2, B_1, B_2, C_1, C_2, S_1
Non-Newtonian fluids through porous media

F. Pierre

Introduction

Context

Keys concept

Rheology

Porous medium

Permeability prediction

Numerical Results

Numerical set up

Numerical results

Model

Transition’s model

Full model

Conclusions

Full model

- Relevant dimensionless non-Newtonian number, \(\mathcal{N} = \frac{\langle U \rangle}{\langle U_c \rangle} = \frac{\langle U \rangle}{\epsilon \times \dot{\gamma} \sqrt{k_0}} \).
- Proof of model validation.
- Analytical model,

\[
\langle U \rangle = -\frac{K^* \cdot \nabla p}{\mu_0},
\]

\[
K^* = (1 - f(\mathcal{N}))K_0 + f(\mathcal{N})K(\parallel \langle U \rangle \parallel).
\]

(5)

\[
\text{Fig : } k^* \text{ versus } \mathcal{N}. \quad \bullet \text{ A1, } \bigcirc \text{ A2, } \bigtriangleup \text{ B1, } \triangle \text{ B2, } \square \text{ C1, } \blacksquare \text{ C2, } \bigtriangledown \text{ S1, } \bigtriangledown \text{ S2, } \text{ Model Eq.5}
\]
Conclusions & Applications

- Studying the transition of a non-Newtonian fluid through porous media.
- Model this transition using rheological and topological parameters, $\dot{\gamma}_c$ and ℓ_{eff}.
- Definition of a dimensionless non-Newtonian number \mathcal{N}, which characterizes the regime.

Many applications can be seen,

- Regime verification in core-flood experiments,
- Estimation of critical distances characterizing the regime transition in petroleum and environmental engineering.

Fig: We find $R_c = 50m$
This work was performed using HPC resources from CALMIP (Grant 2015-11).

This work was supported by Total.

Thanks you for your attention. Any question is welcomed :)
References

../../../../Dropbox/DropBox_These_polymer/Biblio/myBibli.bib