OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Restructuring of colloidal cakes during dewatering

Madeline, J.B. and Meireles, Martine and Bourgerette, C and Botet, Robert and Schweins, R and Cabane, Bernard Restructuring of colloidal cakes during dewatering. (2007) Langmuir, vol. 23 (n° 4). pp. 1645-1658. ISSN 0743-7463

[img] (Document in English)

PDF (Author's version) - Depositor and staff only - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Official URL: http://dx.doi.org/10.1021/la062520z

Abstract

Aqueous suspensions of aggregated silica particles have been dewatered to the point where the colloidal aggregates connect to each other and build a macroscopic network. These wet cakes have been compressed through application of osmotic pressure. Some cakes offer a strong resistance to osmotic pressure, and remain at a low volume fraction of solids; other cakes yield at low applied pressures, achieving nearly complete solid/liquid separation. We used Small Angle Neutron Scattering and Transmission Electron Microscopy to determine the processes by which the particles move and reorganize during cake collapse. We found that these restructuring processes follow a general course made of three stages: (1) at all scales voids are compressed, with large voids compressed more extensively than smaller ones; the local order remains unchanged; (2) all voids with diameters in the range 2-20 particle diameters collapse, and a few dense regions (lumps) are formed; (3) the dense lumps build a rigid skeleton that resists further compression. Depending on the nature of interparticle bonds, some cakes jump spontaneously into stage 3, while others remain stuck in stage 1. In order to elucidate the relation between bond strength and compression resistance, we have constructed a numerical model of the colloidal network. In this model, particles interact through non-central forces that are produced by springs attached to their surfaces. Networks made of bonds that break upon stretching evolve through a plastic deformation that reproduces the 3 stages of restructuring evidenced by the experiments. Networks made of bonds that are fragile jump into stage 3. Networks made of bonds that can be stretched without breaking evolve through elastic compression and restructure only according to stage 1.

Item Type:Article
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS
Other partners > Ecole Supérieure de Physique et de Chimie Industrielles - ESPCI (FRANCE)
Other partners > Institut Laue-Langevin - ILL (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT
Other partners > Université de Paris Diderot - Paris 7 (FRANCE)
Other partners > Université Pierre et Marie Curie, Paris 6 - UPMC (FRANCE)
Université de Toulouse > Université Paul Sabatier-Toulouse III - UPS
Other partners > Université Paris-Sud 11 (FRANCE)
Laboratory name:
Statistics:download
Deposited By: Hélène Dubernard

Repository Staff Only: item control page