OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography

Remigy, Jean-Christophe and Meireles, Martine and Thibault, Xavier Morphological characterization of a polymeric microfiltration membrane by synchrotron radiation computed microtomography. (2007) Journal of Membrane Science, vol. 3 (n° 1-2). pp. 27-35. ISSN 0376-7388

[img]
Preview
(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1143Kb

Official URL: http://dx.doi.org/10.1016/j.memsci.2007.06.059

Abstract

Most commercial polymeric membranes are prepared by phase inversion. The performance of the membranes depends greatly on the morphology of the porous structure formed during the different steps of this process. Researchers in this field have found it extremely difficult to foresee how a change in the composition of the polymer solution will affect pore formation without a set of methods designed to yield detailed knowledge of the morphological structure. This paper reports the new potential associated with X-Ray synchrotron microtomography to characterize the 3D structure of a PvDF hollow fibre microfiltration membrane prepared by phase inversion. 3D morphological data obtained from the ID19 line at the ESRF are presented. The membrane actually appears as a complex three-dimensional bi-continuum of interconnected pores. Within the hollow fibre structure, different regions with various thicknesses and pore size distributions have been identified and well characterized. Transversal views show the anisotropic finger-like structure of pores, while longitudinal sections reveal a honeycomb structure which resembles the structure of highly concentrated water in oil emulsion or dispersion. This typical structure might be obtained during the phase inversion process. How the phase inversion process may result in these morphologies is finally discussed.

Item Type:Article
Additional Information:Thanks to Elsevier editor. The definitive version is available at http://www.sciencedirect.com The original PDF of the article can be found at Journal of Membrane Science website : http://www.sciencedirect.com/science/journal/03767388
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:Other partners > European Synchrotron Radiation Facility - ESRF (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT
Université de Toulouse > Université Paul Sabatier-Toulouse III - UPS
French research institutions > Centre National de la Recherche Scientifique - CNRS
Laboratory name:
Laboratoire de Génie Chimique - LGC (Toulouse, France) - Génie des Interfaces & Milieux Divisés (GIMD)
Statistics:download
Deposited By:Hélène Dubernard

Repository Staff Only: item control page