Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 13990

To cite this version: Evon, Philippe and Labonne, Laurent and Vandenbossche, Virginie and Pontalier, Pierre-Yves and Rigal, Luc
The twin-screw extruder, a continuous liquid/solid extractor and separator during sunflower (Helianthus annuus L.) biorefinery. (2015)
(Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
The twin-screw extruder, a continuous liquid/solid extractor and separator during sunflower biorefinery

Helianthus annuus L.) biorefinery

P. Evon, L. Labonne, V. Vandenbossche, P.Y. Pontalier, L. Rigal

Université de Toulouse, INP, Laboratoire de Chimie Agro-industrielle, ENSIACET, 31030 Toulouse Cedex 4, France

INRA, Laboratoire de Chimie Agro-industrielle, 31030 Toulouse Cedex 4, France

* E-mail address (presenting author): Philippe.Evon@ensiacet.fr (P. Evon)

Biorefinery of sunflower whole plant can be conducted with water using a nine modules Clextral Evolum HT 53 twin-screw extruder (TSE). Aqueous extraction of oil is an environmentally cleaner alternative technology to solvent extraction. TSE carries out three unit operations: conditioning and grinding, liquid/solid (L/S) extraction and L/S separation.

The compressing action by the reverse screws (CF2C) is essential for L/S separation. Positioned in module 9, CF2C screws push part of the mixture upstream against the general movement in TSE, and this counter pressure ensures the L/S separation efficiency above the metal filter, located in eighth position.

Oil is extracted in the form of two emulsions, stabilized by phospholipids and proteins, and usable as co-emulsifiers in cosmetic industry. An aqueous extract containing water-soluble components from whole plant is also generated; it could be recycled. As a mixture of fibers and proteins, the cake can be moulded by thermo-pressing into boards, usable in the furniture and building industries.

In this study, fractionation was conducted from next inlet flow rates: 54 kg/h solid and 183 kg/h water (3.4 L/S ratio). The screw speed varied from 249 to 124 rpm, corresponding to a filling coefficient (ratio of the solid inlet flow rate to the screw speed) from 217 to 436 g/h rpm.

The filling coefficient directly affects the L/S separation efficiency. The latter can be estimated from next experimental data: the outlet flow rates of both cake and filtrate, the cake moisture content, the residual contents of oil and water-soluble components in the cake, and the extraction yields in dry matter, lipids and water-soluble components.

For low filling coefficients (i.e. high screw speed), the L/S mixture compression in CF2C screws is insufficient, not allowing a satisfactory L/S separation. Conversely, for high filling
coefficients (i.e. low screw speed), solid particles accumulate more upstream from the pressing zone, obstructing part of the filtering screens and thus reducing the filtration surface. A less efficient L/S separation is then observed.

From the experimental data evolution, optimal screw speed was estimated at 182 rpm using a second order polynomial regression, corresponding to a filling coefficient of 297 g/h rpm. Extraction yields in dry matter, lipids and water-soluble components were 22%, 49% and 40%, respectively. Such filling would lead to a specific mechanical energy of 103 W/h kg whole plant processed.

Key words: sunflower whole plant, biorefinery, twin-screw extruder, aqueous extraction process, oil and extraction, proteins and extraction
The twin-screw extruder, a continuous liquid/solid extractor and separator during sunflower (Helianthus annuus L.) biorefinery

P. Evon a,b, L. Labonne a,b, V. Vandenbossche a,b, P.Y. Pontalier a,b, L. Rigal a,b

a Université de Toulouse, INP, Laboratoire de Chimie Agro-industrielle, ENSIACET, 31030 Toulouse, France
b INRA, Laboratoire de Chimie Agro-industrielle, 31030 Toulouse, France
* Corresponding author. Tel.: + 33 5 62 44 60 80; fax: + 33 5 62 44 60 82
E-mail address: Philippe.Evon@ensiacet.fr (Ph. Evon)

Introduction

- Biorefinery of sunflower whole plant can be conducted with water using a nine modules Clextral (France) Evolvm HT 53 twin-screw extruder (TSE) [1].
- Aqueous extraction of oil is an environmentally cleaner alternative technology to solvent extraction.
- TSE carries out three unit operations: (i) conditioning and grinding, (ii) liquid/solid (L/S) extraction and (iii) L/S separation.
- The compressed action by the reverse screws (CF2C) is essential for L/S separation. Positioned in module 9, CF2C screw push part of the mixture up-stream against the general movement in TSE, and this counter pressure ensures the L/S separation efficiency above the metal filter, located in eighth position.
- Oil is extracted in the form of two emulsions, stabilized by phospholipids and proteins, and usable as co-emulsifiers in cosmetic industry [1, 2].
- An aqueous extract containing water-soluble components from whole plant is also generated; it could be recycled [1, 2].
- As a mixture of fibers and proteins, the cake can be moulded by thermo-pressing into boards, usable in the furniture and building industries [1-3].
- Because the filling coefficient of TSE directly affects the L/S separation efficiency, this study aimed to evaluate its optimal value.

Keywords: Sunflower whole plant, biorefinery, twin-screw extruder, aqueous extraction process, oil and extraction, proteins and extraction.

Results and discussion

- In this study, fractionation was conducted from next inlet flow rates: 54 kg/h solid and 183 kg/h water (i.e. 3.4 L/S ratio). The screw speed (S) varied from 249 to 124 rpm, corresponding to a filling coefficient (ratio of the solid inlet flow rate to the screw speed) (C) from 217 to 436 g/h rpm.
- The filling coefficient directly affects the L/S separation efficiency. The latter can be estimated from next experimental data: the outlet flow rates of both cake (Q) and filtrate (Q) (Fig. 1), the cake moisture content (H) (Fig. 2a), the residual contents of lipids (L) and water-soluble components (WS) in the cake (Fig. 2b), and the extraction yields in dry matter (R), lipids (R) and water-soluble components (R) (Fig. 2c).

Table 1. Optimal device’s filling coefficient and optimal screw speed estimated using a second order polynomial regression from each experimental data, and corresponding mean value and standard deviation.

<table>
<thead>
<tr>
<th>Experimental data</th>
<th>Optimal C value (g/h rpm)</th>
<th>Optimal S value (rpm)</th>
<th>Mean value</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qc (kg/h)</td>
<td>217</td>
<td>181</td>
<td>297</td>
<td>297 ± 21</td>
</tr>
<tr>
<td>Qr (kg of DM)</td>
<td>436</td>
<td>183</td>
<td>300</td>
<td>300 ± 27</td>
</tr>
<tr>
<td>Hc (%)</td>
<td>307</td>
<td>176</td>
<td>276</td>
<td>276 ± 19</td>
</tr>
<tr>
<td>Lc (%)</td>
<td>300</td>
<td>182</td>
<td>196</td>
<td>196 ± 14</td>
</tr>
<tr>
<td>Rs (%)</td>
<td>249</td>
<td>168</td>
<td>188</td>
<td>188 ± 12</td>
</tr>
<tr>
<td>WSc (%)</td>
<td>297</td>
<td>183</td>
<td>291</td>
<td>291 ± 21</td>
</tr>
<tr>
<td>Rs (%)</td>
<td>124</td>
<td>176</td>
<td>300</td>
<td>300 ± 27</td>
</tr>
<tr>
<td>DM, dry matter</td>
<td></td>
<td></td>
<td>297 ± 21</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

- From the experimental data evolution, optimal filling coefficient was estimated at 297 g/h rpm using a second order polynomial regression, corresponding to a screw speed of 182 rpm (Table 1).
- Extraction yields in dry matter, lipids and water-soluble components were then estimated at 22%, 49% and 40%, respectively (Fig. 2c).
- Such filling would lead to a specific mechanical energy of 103 W/h kg whole plant processed (Fig. 3).

REFERENCES

Fig. 1. Outlet flow rates of the cake (a and b) and the filtrate (c) as a function of the device’s filling coefficient.

Fig. 2. Moisture content (a) and residual contents in lipids (b) and water-soluble components (c) of the cake, and extraction yields in dry matter (c), lipids (c) and water-soluble components (c) as a function of the device’s filling coefficient.

Fig. 3. Current feeding the motor and specific mechanical energy as a function of the device’s filling coefficient.