Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 13539

To cite this version: Nguyen, Tien-Cuong and Anne-Archard, Dominique and Coma, Véronique and Cameleyre, Xavier and Lombard, Eric and To, Kim Anh and Le, Tuan and Fillaudeau, Luc

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Hydrolysis of high concentration lignocellulose suspensions with a cumulative feeding strategy: rheometry and morphogranulometry

T.C. Nguyen(1)*, D. Anne-Archard(2), V. Coma(3), X. Cameleyre(1), E. Lombard(1), K.A. To(4), T. Le(1-4) and L. Fillaudeau(1)

(1) Lab. Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Université de Toulouse, CNRS, INRA, INSA, 135 avenue de Rangueil 31400 Toulouse, FRANCE
(2) Université de Toulouse ; INPT, UPS, CNRS ; IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, 31400 Toulouse, FRANCE.
(3) Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629 CNRS/Université Bordeaux 1, IPB/ENSCPB, Pessac, FRANCE.
(4) School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, VIET-NAM

*Corresponding author: tien-cuong.nguyen@insa-toulouse.fr

Abstract

Bioconversion of lignocelluloses is currently a major challenge if biorefining operations are to become commonplace. The objectives of the present work were to understand and describe the evolution of physical properties of lignocellulose suspensions during enzyme-based hydrolysis reaction. Experimental set-up and methodology were developed in order to carry out a multiscale study of the lignocellulosic materials under high dry content. In-situ and ex-situ rheometry and morpho-granulometry measurements were used to investigate transfer limitations (Fig. 1). Rheological behaviour was modelled and critical concentrations (Ccr) inducing a sharp increase of viscosity were identified with Whatman paper (WP, 35 gdm/L) and paper pulp (PP, 31 gdm/L) [1]. In a first step, hydrolysis experiments demonstrate that single dimensionless viscosity-time curves, \(\mu = f(t) \), could be established for each substrates. Analysing hydrolysis experiments lead to assume an optimal feed rate \(Q^* \) linked to the critical concentration. In a second step, cumulative feeding strategies (up to 10%w/w) were conducted for WP and PP with different ratios \(Q/Q^* \). Results report the evolution of viscosity, hydrolysis rate (Fig. 2) and mean particle size. Mixing power during suspension and hydrolysis steps are discussed as a function of hydrolysis rates.

Fig. 1: Experimental methodology and strategy

Fig. 2: Viscosity and bioconversion rate as a function of hydrolysis time (PP) - Experimental conditions: 1%\(\leq \) [dry matter] \(\leq \) 10%w/w, \(T=40^\circ \text{C}, \) \(pH=4.8, \) Accelerase 1500 (Genencor) 0.5mL/g cellulose -

Key-words: hydrolysis, lignocellulose, viscosity, particle size, bioconversion.