OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Stabilizing effect of optimally amplified streaks in parallel wakes

Del Guercio, Gerardo and Cossu, Carlo and Pujals, Grégory Stabilizing effect of optimally amplified streaks in parallel wakes. (2014) Journal of Fluid Mechanics, 739. 37-56. ISSN 0022-1120

(Document in English)

PDF (Author's version) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader

Official URL: http://dx.doi.org/10.1017/jfm.2013.619


We show that optimal perturbations artificially forced in parallel wakes can be used to completely suppress the absolute instability and to reduce the maximum temporal growth rate of the inflectional instability. To this end we compute optimal transient energy growths of stable streamwise uniform perturbations supported by a parallel wake for a set of Reynolds numbers and spanwise wavenumbers. The maximum growth rates are shown to be proportional to the square of the Reynolds number and to increase with spanwise wavelengths with sinuous perturbations slightly more amplified than varicose ones. Optimal initial conditions consist of streamwise vortices and the optimally amplified perturbations are streamwise streaks. Families of nonlinear streaky wakes are then computed by direct numerical simulation using optimal initial vortices of increasing amplitude as initial conditions. The stabilizing effect of nonlinear streaks on temporal and spatiotemporal growth rates is then determined by analysing the linear impulse response supported by the maximum amplitude streaky wakes profiles. This analysis reveals that at Re=50, streaks of spanwise amplitude As≈8%U∞ can completely suppress the absolute instability, converting it into a convective instability. The sensitivity of the absolute and maximum temporal growth rates to streak amplitudes is found to be quadratic, as has been recently predicted. As the sensitivity to two-dimensional (2D, spanwise uniform) perturbations is linear, three-dimensional (3D) perturbations become more effective than the 2D ones only at finite amplitudes. Concerning the investigated cases, 3D perturbations become more effective than the 2D ones for streak amplitudes As≳3%U∞ in reducing the maximum temporal amplification and As≳12%U∞ in reducing the absolute growth rate. However, due to the large optimal energy growths they experience, 3D optimal perturbations are found to be much more efficient than 2D perturbations in terms of initial perturbation amplitudes. Despite their lower maximum transient amplification, varicose streaks are found to be always more effective than sinuous ones in stabilizing the wakes, in accordance with previous findings.

Item Type:Article
Additional Information:Thanks to Cambridge University Press editor. The definitive version is available at http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9121718&fileId=S0022112013006198
HAL Id:hal-01011323
Audience (journal):International peer-reviewed journal
Uncontrolled Keywords:
Institution:French research institutions > Centre National de la Recherche Scientifique - CNRS (FRANCE)
Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université de Toulouse > Université Toulouse III - Paul Sabatier - UPS (FRANCE)
Other partners > PSA Peugeot Citroën (FRANCE)
Laboratory name:
Deposited By: Carlo COSSU
Deposited On:23 Jun 2014 14:14

Repository Staff Only: item control page