
Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@inp-toulouse.fr
Recovering the initial state of a Well-Posed Linear System with skew-adjoint generator

Ghislain Haine
ISAE – Supported by IDEX-"Nouveaux Entrants"

Workshop New trends in modeling, control and inverse problems
June, 16–19
Session “Time optimal control and observers”
1 Introduction

2 The reconstruction algorithm

3 Main result
 • With bounded observation operator
 • With unbounded observation operator

4 Application

5 Conclusion
1 Introduction

2 The reconstruction algorithm

3 Main result
 - With bounded observation operator
 - With unbounded observation operator

4 Application

5 Conclusion
Let

- X be a Hilbert space,
- $A : \mathcal{D}(A) \subset X \to X$ be a skew-adjoint operator,
Let

- X be a Hilbert space,
- $A : \mathcal{D}(A) \subset X \to X$ be a skew-adjoint operator,

Considered systems

\[
\begin{aligned}
\dot{z}(t) &= A z(t), \quad \forall \ t \in [0, \infty), \\
z(0) &= z_0 \in \mathcal{D}(A).
\end{aligned}
\]
Let

- \(X \) be a Hilbert space,
- \(A : \mathcal{D}(A) \subset X \to X \) be a skew-adjoint operator,

Considered systems

\[
\begin{aligned}
\dot{z}(t) &= Az(t), & \forall \ t \in [0, \infty), \\
\quad z(0) &= z_0 \in \mathcal{D}(A).
\end{aligned}
\]

For instance:

\[
A = \begin{bmatrix}
0 & I \\
\triangle & 0
\end{bmatrix}
\] (+ Dirichlet boundary conditions) on \(\Omega \subset \mathbb{R}^n \) and

\[
X = H^1_0(\Omega) \times L^2(\Omega).
\]

\(\quad \downarrow \)

the classical wave equation.
Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$
Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$

We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.
Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X,Y)$
- $\tau > 0$

We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.

The classical wave equation, with $C = \begin{bmatrix} 0 & \chi O \end{bmatrix}$:

\[
\begin{align*}
y(t) &= \begin{bmatrix} 0 & \chi O \end{bmatrix} \begin{bmatrix} w(t) \\ \dot{w}(t) \end{bmatrix}, \quad \forall t \in [0, \tau], \\
&= \chi O \dot{w}(t), \quad \forall t \in [0, \tau].
\end{align*}
\]
Let
- Y be another Hilbert space
- $C \in \mathcal{L}(X,Y)$
- $\tau > 0$

We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.

The classical wave equation, with $C = \begin{bmatrix} 0 & \chi_\Omega \end{bmatrix}$:

$$y(t) = \begin{bmatrix} 0 & \chi_\Omega \end{bmatrix} \begin{bmatrix} w(t) \\ \dot{w}(t) \end{bmatrix}, \quad \forall t \in [0, \tau],$$

$$= \chi_\Omega \dot{w}(t), \quad \forall t \in [0, \tau].$$

Our problem

Reconstruct the unknown z_0 from the measurement $y(t)$.
1 Introduction

2 The reconstruction algorithm

3 Main result
 • With bounded observation operator
 • With unbounded observation operator

4 Application

5 Conclusion
K. Ramdani, M. Tucsnak, and G. Weiss

Recovering the initial state of an infinite-dimensional system using observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on $[0, \tau]$.
Some bibliography

- **2008**: Phung and Zhang (*SIAM J. Appl. Math.*) introduced the Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

- **2010**: Ramdani, Tucsnak and Weiss (*Automatica*) generalized the TRF, based on the generalization of Luenberger’s observers.
• **2005:** Auroux and Blum (*C. R. Math. Acad. Sci. Paris*) introduced the Back and Forth Nudging (BFN), based on the generalization of Kalman’s filters

• **2008:** Phung and Zhang (*SIAM J. Appl. Math.*) introduced the Time Reversal Focusing (TRF), for the Kirchhoff plate equation
• **2005:** Auroux and Blum (*C. R. Math. Acad. Sci. Paris*) introduced the Back and Forth Nudging (BFN), based on the generalization of Kalman’s filters

• **2008:** Phung and Zhang (*SIAM J. Appl. Math.*) introduced the Time Reversal Focusing (TRF), for the Kirchhoff plate equation

• **2010:** Ramdani, Tucsnak and Weiss (*Automatica*) generalized the TRF, based on the generalization of Luenberger’s observers
We construct the **forward observer**

\[
\begin{aligned}
\dot{z}^+(t) &= A z^+(t) - C^* C z^+(t) + C^* y(t), \quad \forall \ t \in [0, \tau], \\
z^+(0) &= z_0^+ \in \mathcal{D}(A).
\end{aligned}
\]
We construct the **forward observer**

\[
\begin{align*}
\dot{z}^+(t) &= Az^+(t) - C^*Cz^+(t) + C^*y(t), & \forall \ t \in [0, \tau], \\
z^+(0) &= z_0^+ \in \mathcal{D}(A).
\end{align*}
\]

We subtract the observed system

\[
\begin{align*}
\dot{z}(t) &= Az(t), & \forall \ t \in [0, \tau], \\
z(0) &= z_0,
\end{align*}
\]
We construct the **forward observer**

\[
\begin{align*}
\dot{z}^+(t) &= A z^+(t) - C^* C z^+(t) + C^* y(t), \quad \forall \ t \in [0, \tau], \\
z^+(0) &= z_0^+ \in D(A).
\end{align*}
\]

We subtract the observed system

\[
\begin{align*}
\dot{z}(t) &= A z(t), \quad \forall \ t \in [0, \tau], \\
z(0) &= z_0,
\end{align*}
\]

to obtain *(remember that \(y(t) = C z(t)\)),* denoting

\[
e = z^+ - z,
\]

the estimation error,

\[
\begin{align*}
\dot{e}(t) &= (A - C^* C) e(t), \quad \forall \ t \in [0, \tau], \\
e(0) &= z_0^+ - z_0,
\end{align*}
\]
We construct the forward observer

\[
\begin{aligned}
\dot{z}^+(t) &= Az^+(t) - C^*Cz^+(t) + C^*y(t), \quad \forall \ t \in [0, \tau], \\
z^+(0) &= z^+_0 \in \mathcal{D}(A).
\end{aligned}
\]

We subtract the observed system

\[
\begin{aligned}
\dot{z}(t) &= Az(t), \quad \forall \ t \in [0, \tau], \\
z(0) &= z_0,
\end{aligned}
\]

to obtain (remember that \(y(t) = Cz(t)\)), denoting

\[e = z^+ - z,\]

the estimation error,

\[
\begin{aligned}
\dot{e}(t) &= (A - C^*C) e(t), \quad \forall \ t \in [0, \tau], \\
e(0) &= z^+_0 - z_0,
\end{aligned}
\]

which is known to be exponentially stable if and only if \((A, C')\) is exactly observable, i.e.

\[
\exists \tau > 0, \exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 \, dt \geq k_\tau^2 \|z_0\|^2, \quad \forall \ z_0 \in \mathcal{D}(A).
\]
Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq Me^{-\beta \tau}\|z_0^+ - z_0\|.$$
Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq Me^{-\beta \tau}\|z_0^+ - z_0\|.$$

We construct a similar system: the **backward observer**,

\[
\begin{aligned}
\dot{z}^-(t) &= Az^-(t) + C^*Cz^-(t) - C^*y(t), & \forall t \in [0, \tau], \\
z^-(\tau) &= z^+(\tau).
\end{aligned}
\]
Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq Me^{-\beta \tau}\|z_0^+ - z_0\|.$$

We construct a similar system: the **backward observer**,

$$\begin{cases}
\dot{z}^-(t) = Az^-(t) + C^*Cz^-(t) - C^*y(t), & \forall \ t \in [0, \tau], \\
\dot{z}^-(\tau) = z^+(\tau).
\end{cases}$$

After a time reversal $Z^-(t) = \mathcal{R}_\tau z^-(t) := z^- (\tau - t)$, we get

$$\begin{cases}
\dot{Z}^-(t) = -AZ^-(t) - C^*CZ^-(t) + C^*y(\tau - t), & \forall \ t \in [0, \tau], \\
Z^-(0) = z^+(\tau).
\end{cases}$$
Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that
\[\| z^+(\tau) - z(\tau) \| \leq Me^{-\beta \tau} \| z_0^+ - z_0 \|. \]

We construct a similar system: the **backward observer**,
\[
\begin{cases}
\dot{z}^- (t) = Az^- (t) + C^* C z^- (t) - C^* y(t), & \forall t \in [0, \tau], \\
\tau^{-} (\tau) = z^+ (\tau).
\end{cases}
\]

After a time reversal $Z^- (t) = \Psi_\tau z^- (t) := z^- (\tau - t)$, we get
\[
\begin{cases}
\dot{Z}^- (t) = -AZ^- (t) - C^* CZ^- (t) + C^* y(\tau - t), & \forall t \in [0, \tau], \\
Z^- (0) = z^+ (\tau).
\end{cases}
\]

And from similar computations for $A^- := -A - C^* C$ as those for $A^+ := A - C^* C$:
\[t \| z^- (0) - z_0 \| \leq Me^{-\beta \tau} \| z^+(\tau) - z(\tau) \| \leq M^2 e^{-2\beta \tau} \| z_0^+ - z_0 \|. \]
If the system is exactly observable in time $\tau > 0$, that is if:

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(A),$$

$$\alpha := M^2 e^{-2\beta \tau} < 1.$$
If the system is exactly observable in time $\tau > 0$, that is if:

$$\exists k_{\tau} > 0, \int_0^{\tau} \|y(t)\|^2 dt \geq k_{\tau}^2 \|z_0\|^2, \quad \forall z_0 \in D(A),$$

$$\alpha := M^2 e^{-2\beta \tau} < 1.$$

Iterating n-times the forward–backward observers with $z_n^+(0) = z_{n-1}^-(0)$ leads to

$$\|z_n^-(0) - z_0\| \leq \alpha^n \|z_0^+ - z_0\|.$$

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to reconstruct z_0 from $y(t)$.
1 Introduction

2 The reconstruction algorithm

3 Main result
 • With bounded observation operator
 • With unbounded observation operator

4 Application

5 Conclusion
Outline

1 Introduction

2 The reconstruction algorithm

3 Main result
 - With bounded observation operator
 - With unbounded observation operator

4 Application

5 Conclusion
In this work, the exact observability assumption in time τ

$$\exists k_{\tau} > 0, \int_0^\tau \| y(t) \|^2 dt \geq k_{\tau}^2 \| z_0 \|^2, \quad \forall z_0 \in \mathcal{D}(A),$$

is not supposed to be satisfied!
In this work, the exact observability assumption in time τ

$$\exists k_{\tau} > 0, \int_0^\tau \|y(t)\|^2dt \geq k_{\tau}^2\|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(A),$$

is not supposed to be satisfied!

However, the observers don’t need this assumption to make sense.
In this work, the exact observability assumption in time τ

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(A),$$

is not supposed to be satisfied!

However, the observers don’t need this assumption to make sense.

Questions

- Given arbitrary C and $\tau > 0$, does the algorithm converge?
- If it does, what is the limit of $z_\infty(0)$ and how is it related to z_0?
Decomposition of X:

- Let us denote Ψ_τ the following continuous linear operator

\[
\Psi_\tau : X \rightarrow L^2([0, \tau], Y),
\]

$z_0 \mapsto y(t)$.
Decomposition of X:

- Let us denote Ψ_τ the following continuous linear operator

$$
\Psi_\tau : X \rightarrow L^2([0, \tau], Y),
$$

$z_0 \mapsto y(t)$.

Intuitively, if z_0 is in $\text{Ker} \ \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0!
Decomposition of X:

- Let us denote Ψ_τ the following continuous linear operator

\[
\Psi_\tau : X \longrightarrow L^2([0, \tau], Y),
\]
\[
z_0 \mapsto y(t).
\]

Intuitively, if z_0 is in $\text{Ker} \, \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0!

- We decompose $X = \text{Ker} \, \Psi_\tau \oplus (\text{Ker} \, \Psi_\tau)^\perp$ and define

\[
V_{\text{Unobs}} = \text{Ker} \, \Psi_\tau, \quad V_{\text{Obs}} = (\text{Ker} \, \Psi_\tau)^\perp = \overline{\text{Ran} \, \Psi^*_\tau}.
\]
Decomposition of X:

- Let us denote Ψ_τ the following continuous linear operator

\[
\Psi_\tau : X \rightarrow L^2([0,\tau], Y),
\]

\[
z_0 \mapsto y(t).
\]

Intuitively, if z_0 is in $\text{Ker} \; \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0!

- We decompose $X = \text{Ker} \; \Psi_\tau \oplus (\text{Ker} \; \Psi_\tau)^\perp$ and define

\[
V_{\text{Unobs}} = \text{Ker} \; \Psi_\tau, \quad V_{\text{Obs}} = (\text{Ker} \; \Psi_\tau)^\perp = \overline{\text{Ran} \; \Psi^*_\tau}.
\]

Note that the exact observability assumption is equivalent to Ψ_τ is bounded from below and then $\Rightarrow X = \text{Ran} \; \Psi^*_\tau$.

G. Haine
Recovering the initial state of a WPLS 15/31
Stability of the decomposition under the algorithm:

- Forward–backward observers cycle \Rightarrow operator $T^- T^+$, i.e.

$$z^-(0) - z_0 = T^- T^+ (z^+_0 - z_0).$$
Stability of the decomposition under the algorithm:
Let us denote \mathbb{T}^+ (resp. \mathbb{T}^-) the semigroup generated by $A^+ := A - C^* C$ (resp. $A^- := -A - C^* C$) on X.

- Forward–backward observers cycle \Rightarrow operator $\mathbb{T}_\tau^- \mathbb{T}_\tau^+$, i.e.
 \[
 z^-(0) - z_0 = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ \left(z^+_0 - z_0 \right).
 \]

- Denote \mathbb{S} the group generated by A, then (since $A = A^+ + C^* C$)
 \[
 \mathbb{S}_\tau z_0 = \mathbb{T}_\tau^+ z_0 + \int_0^{\tau} \mathbb{T}_{\tau-t}^+ C^* C \mathbb{S}_t z_0 \, dt, \quad \forall \ z_0 \in X.
 \]
Stability of the decomposition under the algorithm:

- Forward–backward observers cycle \Rightarrow operator $T^- T^+$, i.e.
 \[z^-(0) - z_0 = T^- T^+ (z_0^+ - z_0). \]

- Denote S the group generated by A, then (since $A = A^+ + C^*C$)
 \[S^{-}\tau z_0 = T^+_{\tau} z_0 + \int_0^\tau T^+_{\tau-t} C^* C S_t z_0 \Psi_{\tau} z_0 dt, \quad \forall \ z_0 \in X. \]

- Using this (type of) Duhamel formula(s), we obtain
 \[T^- T^+ V_{\text{Unobs}} \subset V_{\text{Unobs}}, \quad T^- T^+ V_{\text{Obs}} \subset V_{\text{Obs}}. \]
Stability of the decomposition under the algorithm:

- Forward–backward observers cycle \Rightarrow operator $T^- T^+$, i.e.

$$z^-(0) - z_0 = T^- T^+(z_0^+ - z_0).$$

- Denote S the group generated by A, then (since $A = A^+ + C^*C$)

$$S_T z_0 = T^+_T z_0 + \int_0^T T^+_{T-t} C^* C S_t z_0 dt, \quad \forall \ z_0 \in X.$$

- Using this (type of) Duhamel formula(s), we obtain

$$T^- T^+ V_{Unobs} \subset V_{Unobs}, \quad T^- T^+ V_{Obs} \subset V_{Obs}.$$

The algorithm preserves the decomposition of X!
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.

Let us denote $L = T - \tau T + \tau |V_{\text{Obs}}|$, we have:

$$\|L_n z\| = o\left(\frac{1}{n}\right), \quad \forall z \in X$$

$$\|L\|_{L(V_{\text{Obs}})} < 1 \iff \text{Ran} \Psi^* \tau \text{is closed in } X$$

Sketch of proof

1. L is positive self-adjoint.
2. Duhamel formulas

$$\Rightarrow \|L\|_{L(V_{\text{Obs}})} \text{ in term of } \inf \|z\| = 1, z \in V_{\text{Obs}} \|\Psi^* \tau z\|.$$

$$\text{Ran} \Psi^* \tau \text{closed in } X \iff \Psi^* \tau \text{bounded from below on } V_{\text{Obs}}.$$

Furthermore, it is easy to prove that:

$$z + \varepsilon \in V_{\text{Obs}} \Rightarrow z - n(0) \in V_{\text{Obs}}, \quad \forall n \geq 1.$$
Convergence of the algorithm:
- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = T^\tau - T^\tau_+ |_{V_{Obs}}$, we have:

$$
\|L^n z\| = o\left(\frac{1}{n}\right), \quad \forall z \in X
$$
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = T^- T^+ |_{V_{\text{Obs}}}$, we have:

\[\|L^n z\| = o \left(\frac{1}{n} \right), \quad \forall z \in X \]

\[\|L\|_{\mathcal{L}(V_{\text{Obs}})} < 1 \iff \text{Ran } \Psi^*_r \text{ is closed in } X \]
Convergence of the algorithm:
- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = \mathbb{T}_-^\tau \mathbb{T}_+^\tau |_{\mathbb{V}_{\text{Obs}}}$, we have:

\[\|L^n z\| = o \left(\frac{1}{n} \right), \quad \forall z \in X \]

\[\|L\|_{\mathcal{L}(\mathbb{V}_{\text{Obs}})} < 1 \iff \text{Ran } \Psi^*_\tau \text{ is closed in } X \]

Sketch of proof

1. L is positive self-adjoint.
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = T_\tau^- T_\tau^+ |V_{Obs}$, we have:

1. $\|L^n z\| = o\left(\frac{1}{n}\right)$, $\forall z \in X$

2. $\|L\|_{\mathcal{L}(V_{Obs})} < 1 \iff \text{Ran } \Psi_\tau^* \text{ is closed in } X$

Sketch of proof

1. L is positive self-adjoint.
2. $L^{n+1} < L^n$ from which we get $\lim_{n \to \infty} L^n = L_\infty \in \mathcal{L}(V_{Obs})$.

G. Haine

Recovering the initial state of a WPLS
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = T^{-}_\tau T^+_\tau |_{V_{Obs}}$, we have:

 1. $\|L^n z\| = o\left(\frac{1}{n}\right), \quad \forall z \in X$

 2. $\|L\|_{\mathcal{L}(V_{Obs})} < 1 \iff \text{Ran } \Psi^*_\tau \text{ is closed in } X$

Sketch of proof

1. L is positive self-adjoint.
2. $L^{n+1} < L^n$ from which we get $\lim_{n \to \infty} L^n = L_\infty \in \mathcal{L}(V_{Obs})$.
3. $\forall z \in X$, $\sum_{n \in \mathbb{N}} L^n z$ converges absolutely in X.
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = \mathbb{T}_\tau^{-} \mathbb{T}_\tau^{+} |_{V_{\text{Obs}}}$, we have:

 1. $\|L^n z\| = o\left(\frac{1}{n}\right)$, \quad $\forall z \in X$

 2. $\|L\|_{\mathcal{L}(V_{\text{Obs}})} < 1 \iff \text{Ran } \Psi^*_\tau \text{ is closed in } X$

Sketch of proof

1. L is positive self-adjoint.
2. $L^{n+1} < L^n$ from which we get $\lim_{n \to \infty} L^n = L_\infty \in \mathcal{L}(V_{\text{Obs}})$.
 - $\forall z \in X$, $\sum_{n \in \mathbb{N}} L^n z$ converges absolutely in X.
3. Duhamel formulas $\implies \|L\|_{\mathcal{L}(V_{\text{Obs}})}$ in term of
 $$\inf_{\|z\|=1, z \in V_{\text{Obs}}} \|\Psi^*_\tau z\|.$$
Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = \mathbb{T}_\tau^- \mathbb{T}_\tau^+$|$_{V_{\text{Obs}}}$, we have:

 $\|L^n z\| = o\left(\frac{1}{n}\right), \quad \forall z \in X$

$\|L\|_{\mathcal{L}(V_{\text{Obs}})} < 1 \iff \text{Ran } \Psi_\tau^* \text{ is closed in } X$

Sketch of proof

1. L is positive self-adjoint.
2. $L^{n+1} < L^n$ from which we get $\lim_{n \to \infty} L^n = L_\infty \in \mathcal{L}(V_{\text{Obs}})$.

- $\forall z \in X$, $\sum_{n \in \mathbb{N}} L^n z$ converges absolutely in X.

2. Duhamel formulas $\Rightarrow \|L\|_{\mathcal{L}(V_{\text{Obs}})}$ in term of

$$\inf_{\|z\| = 1, z \in V_{\text{Obs}}} \|\Psi_\tau z\|.$$

- $\text{Ran } \Psi_\tau^*$ closed in X \iff Ψ_τ bounded from below on V_{Obs}.

Convergence of the algorithm:

- It is obvious that the algorithm has no influence on V_{Unobs}.
- Let us denote $L = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ |_{V_{Obs}}$, we have:
 \[|L^n z| = o\left(\frac{1}{n}\right), \quad \forall z \in X \]

\[\|L\|_{\mathcal{L}(V_{Obs})} < 1 \iff \text{Ran } \Psi_\tau^* \text{ is closed in } X \]

Sketch of proof

1. **L** is positive self-adjoint.
2. $L^{n+1} < L^n$ from which we get $\lim_{n \to \infty} L^n = L_\infty \in \mathcal{L}(V_{Obs})$.
3. $\forall z \in X$, $\sum_{n \in \mathbb{N}} L^n z$ converges absolutely in X.
4. Duhamel formulas $\Rightarrow \|L\|_{\mathcal{L}(V_{Obs})}$ in term of
 \[\inf_{\|z\|=1, z \in V_{Obs}} \|\Psi_\tau z\| . \]
5. Ran Ψ_τ^* closed in $X \iff \Psi_\tau$ bounded from below on V_{Obs}.

Furthermore, it is easy to prove that:

\[z_0^+ \in V_{Obs} \implies z_n^-(0) \in V_{Obs}, \forall n \geq 1. \]
Theorem

Denote by \(\Pi \) the orthogonal projection from \(X \) onto \(V_{\text{Obs}} \). Then the following statements hold true for all \(z_0 \in X \) and \(z_0^+ \in V_{\text{Obs}} \):

1. For all \(n \geq 1 \),
 \[
 \|(I - \Pi) (z_n^- (0) - z_0)\| = \|(I - \Pi) z_0\|.
 \]

2. The sequence \((\|\Pi (z_n^- (0) - z_0)\|)_{n \geq 1} \) is strictly decreasing and
 \[
 \|\Pi (z_n^- (0) - z_0)\| = \|z_n^- (0) - \Pi z_0\| \xrightarrow{n \to \infty} 0.
 \]

3. There exists a constant \(\alpha \in (0, 1) \), independent of \(z_0 \) and \(z_0^+ \), such that for all \(n \geq 1 \),
 \[
 \|\Pi (z_n^- (0) - z_0)\| \leq \alpha^n \|z_0^+ - \Pi z_0\|,
 \]
 if and only if \(\text{Ran} \Psi^*_\tau \) is closed in \(X \).
Outline

1 Introduction

2 The reconstruction algorithm

3 Main result
 - With bounded observation operator
 - With unbounded observation operator

4 Application

5 Conclusion
What happens if C is unbounded?

- Main issue $\Rightarrow A - C^*C$ has no more meaning (as a generator).

How to close the system?
What happens if C is unbounded?

- Main issue $\implies A - C^*C$ has no more meaning (as a generator).
 How to close the system?

- Main tool \implies Stabilization by colocated feedback law for well-posed linear system (Curtain and Weiss 2006) allowing admissible C.

Well-posed linear system:

$$z(t) | [0,t] = \Sigma t \left[z(0) u | [0,t] \right], \forall t \geq 0,$$

where $u \in U := L_2([0,\infty), U)$ and $y \in Y := L_2([0,\infty), Y)$ are the control and the observation (with U and Y two Hilbert spaces).

Well-posedness means that for all $t \geq 0$:

$$\Sigma t = [T_t \Phi_t \Psi_t F_t] \in L(X \times U, X \times Y).$$
What happens if C is unbounded?

- Main issue $\implies A - C^* C$ has no more meaning (as a generator). How to close the system?

- Main tool \implies Stabilization by colocated feedback law for well-posed linear system (Curtain and Weiss 2006) allowing admissible C.

- Well-posed linear system

$$\begin{bmatrix} z(t) \\ y|_{[0,t]} \end{bmatrix} = \Sigma_t \begin{bmatrix} z_0 \\ u|_{[0,t]} \end{bmatrix}, \quad \forall \, t \geq 0,$$

where $u \in U := L^2([0, \infty), U)$ and $y \in Y := L^2([0, \infty), Y)$ are the control and the observation (with U and Y two Hilbert spaces).
What happens if C is unbounded?

- Main issue $\implies A - C^*C$ has no more meaning (as a generator). How to close the system?

- Main tool \implies Stabilization by colocated feedback law for well-posed linear system (Curtain and Weiss 2006) allowing admissible C.

- Well-posed linear system

$$\begin{bmatrix} z(t) \\ y|_{[0,t]} \end{bmatrix} = \sum_t \begin{bmatrix} z_0 \\ u|_{[0,t]} \end{bmatrix}, \quad \forall t \geq 0,$$

where $u \in U := L^2([0, \infty), U)$ and $y \in Y := L^2([0, \infty), Y)$ are the control and the observation (with U and Y two Hilbert spaces).

- **Well-posedness** means that for all $t \geq 0$:

$$\Sigma_t = \begin{bmatrix} \mathbb{T}_t & \Phi_t \\ \Psi_t & \mathbb{F}_t \end{bmatrix} \in \mathcal{L}(X \times U, X \times Y).$$
Let $A \in L(D(A),X)$ be the infinitesimal generator of T. We denote X_1 the Hilbert space $D(A)$ (with the graph norm) and X^{-1} its dual with respect to the pivot space X.

Associated triple (A,B,C):

There exist a control operator $B \in L(U,X^{-1})$ and a observation operator $C \in L(X_1,Y)$ such that

$$\Phi_t u = \int_0^t T_{t-s} Bu(s) \, ds, \quad \forall u \in U,$$

and

$$\Psi_t z_0(s) = \begin{cases} C^T s z_0, & \forall s \in [0,t] \\ 0, & \forall s > t \forall z_0 \in X_1. \end{cases}$$
M. Tucsnak and G. Weiss

Well-posed systems – The LTI case and beyond *(Automatica, 2014)*

Let $A \in \mathcal{L}(\mathcal{D}(A), X)$ be the infinitesimal generator of \mathbb{T}.
We denote X_1 the Hilbert space $\mathcal{D}(A)$ (with the graph norm) and X_{-1} its dual with respect to the pivot space X.

Let $A \in \mathcal{L}(\mathcal{D}(A), X)$ be the infinitesimal generator of \mathbb{T}. We denote X_1 the Hilbert space $\mathcal{D}(A)$ (with the graph norm) and X_{-1} its dual with respect to the pivot space X.

Associated triple (A, B, C): There exist a control operator $B \in \mathcal{L}(U, X_{-1})$ and an observation operator $C \in \mathcal{L}(X_1, Y)$ such that

$$\Phi_t u = \int_0^t \mathbb{T}_{t-s} B u(s) ds, \quad \forall \ u \in U,$$

and

$$\Psi_t z_0(s) = \begin{cases} C \mathbb{T}_s z_0, & \forall \ s \in [0, t] \\ 0, & \forall \ s > t \end{cases} \quad \forall \ z_0 \in X_1.$$
Let Σ be associated with (A, C^*, C), with A skew-adjoint.

Theorem (Curtain and Weiss 2006)

There exists $\kappa \in (0, \infty]$ such that for all $\gamma \in (0, \kappa)$, the feedback law $u = -\gamma y + v$ (v is the new control) leads to a closed-loop system $\Sigma \gamma$ which is well-posed. Furthermore:

$$
\Sigma \gamma - \Sigma = \Sigma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma \gamma = \Sigma \gamma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma.
$$
Let Σ be associated with (A, C^*, C), with A skew-adjoint.

Theorem (Curtain and Weiss 2006)

There exists $\kappa \in (0, \infty]$ such that for all $\gamma \in (0, \kappa)$, the feedback law $u = -\gamma y + v$ (v is the new control) leads to a closed-loop system Σ^γ which is well-posed. Furthermore:

$$\Sigma^\gamma - \Sigma = \Sigma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma^\gamma = \Sigma^\gamma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma.$$

Applying this theorem to Σ associated with (A, C^*, C), we obtain a closed-loop system Σ^+.

$z(t) = z(0) + T\left(t, 0\right)(z(t) - z(0)),$ $\forall t \geq 0,$ $z(t) \in X,$ where $T\left(t, 0\right)$ is the semigroup of Σ. Under some additional assumptions (namely optimizability and estimatability), the closed-loop system is exponentially stable. In other words, the associated semigroup is: z^+ is a forward observer of z.
Let Σ be associated with (A, C^*, C), with A skew-adjoint.

Theorem (Curtain and Weiss 2006)

There exists $\kappa \in (0, \infty]$ such that for all $\gamma \in (0, \kappa)$, the feedback law $u = -\gamma y + v$ (v is the new control) leads to a closed-loop system $\Sigma\gamma$ which is well-posed. Furthermore:

$$
\Sigma\gamma - \Sigma = \Sigma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma = \Sigma \gamma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma.
$$

Applying this theorem to Σ associated with (A, C^*, C), we obtain a closed-loop system Σ^+. Let z^+ be the trajectory of Σ^+ with control $v = \gamma y$ (for simplicity we suppose $u \equiv 0$), then we have

$$
z^+(t) - z(t) = \mathbb{T}_t^+ (z_0^+ - z_0), \quad \forall t \geq 0, z_0^+ \in X,
$$

where \mathbb{T}^+ is the semigroup of Σ^+. Under some additional assumptions (namely optimizability and estimatability), the closed-loop system is exponentially stable. In other words, the associated semigroup is:

z^+ is a forward observer of z.

G. Haine

Recovering the initial state of a WPLS

22/ 31
Theorem (Curtain and Weiss 2006)

There exists $\kappa \in (0, \infty]$ such that for all $\gamma \in (0, \kappa)$, the feedback law $u = -\gamma y + v$ (v is the new control) leads to a closed-loop system Σ^γ which is well-posed. Furthermore:

$$\Sigma^\gamma - \Sigma = \Sigma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma^\gamma = \Sigma^\gamma \begin{bmatrix} 0 & 0 \\ 0 & \gamma I \end{bmatrix} \Sigma.$$

Applying this theorem to Σ associated with (A, C^*, C), we obtain a closed-loop system Σ^+. Let z^+ be the trajectory of Σ^+ with control $v = \gamma y$ (for simplicity we suppose $u \equiv 0$), then we have

$$z^+(t) - z(t) = \mathbb{T}^+_t \left(z_0^+ - z_0 \right), \quad \forall \ t \geq 0, \ z_0^+ \in X,$$

where \mathbb{T}^+ is the semigroup of Σ^+. Under some additional assumptions (namely optimizability and estimatability), the closed-loop system is exponentially stable. In other words, the associated semigroup is: z^+ is a **forward observer** of z.

Let Σ be associated with (A, C^*, C), with A skew-adjoint.
The idea is now to construct the backward observer. There is mainly two ways to do that using the dual of a well-posed linear system.

\[\Sigma_d = \begin{bmatrix} T_d & \Phi_d & \Psi_d & F_d \end{bmatrix} = \begin{bmatrix} I & 0 & 0 & R_t \end{bmatrix} \begin{bmatrix} T^* & \Phi^* & \Psi^* & F^* \end{bmatrix} \begin{bmatrix} I & 0 & 0 & R_t \end{bmatrix}. \]

Then \(\Sigma_d \) is a well-posed linear system with input space \(Y \), state space \(X \) and output space \(U \), associated with \((A^*,C^*,B^*)\).

1. We can construct the closed-loop system \(\Sigma^\sim \) of \(\Sigma_d \).
2. Or, equivalently, define \(\Sigma^\sim \) as the dual of \(\Sigma^+ \).

We then obtain the same theorem as for bounded \(C \), using \(z^+ \) and \(z^- \), the respective trajectories of \(\Sigma^+ \) and \(\Sigma^- \), as forward and backward observers.
The idea is now to construct the backward observer. There is mainly two ways to do that using the dual of a well-posed linear system.

Dual system

Define Σ^d by

$$
\Sigma^d_t = \begin{bmatrix} T^d_t & \Phi^d_t \\ \Psi^d_t & F^d_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & J_t \end{bmatrix} \begin{bmatrix} T^*_t & \Psi^*_t \\ \Phi^*_t & F^*_t \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & J_t \end{bmatrix}.
$$

Then Σ^d is a well-posed linear system with input space Y, state space X and output space U, associated with (A^*, C^*, B^*).

Where $J_t u(s) := u(t - s)$ is the time reversal operator.
The idea is now to construct the backward observer. There is mainly two ways to do that using the dual of a well-posed linear system.

Dual system

Define Σ^d by

$$
\Sigma_t^d = \begin{bmatrix}
T_t^d & \Phi_t^d \\
\Psi_t^d & F_t^d
\end{bmatrix} = \begin{bmatrix}
I & 0 \\
0 & \mathcal{H}_t
\end{bmatrix}
\begin{bmatrix}
T_t^* & \Psi_t^* \\
\Phi_t^* & F_t^*
\end{bmatrix}
\begin{bmatrix}
I & 0 \\
0 & \mathcal{H}_t
\end{bmatrix}.
$$

Then Σ^d is a well-posed linear system with input space Y, state space X and output space U, associated with (A^*, C^*, B^*).

Where $\mathcal{H}_t u(s) := u(t - s)$ is the time reversal operator.

- We can construct the closed-loop system Σ^- of Σ^d.

The idea is now to construct the backward observer. There is mainly two ways to do that using the dual of a well-posed linear system.

Dual system

Define Σ^d by

$$
\Sigma^d_t = \begin{bmatrix}
T^d_t & \Phi^d_t \\
\Psi^d_t & F^d_t
\end{bmatrix} = \begin{bmatrix} I & 0 \\
0 & \mathcal{R}_t \end{bmatrix} \begin{bmatrix} T^*_t & \Psi^*_t \\
\Phi^*_t & F^*_t \end{bmatrix} \begin{bmatrix} I & 0 \\
0 & \mathcal{R}_t \end{bmatrix}.
$$

Then Σ^d is a well-posed linear system with input space Y, state space X and output space U, associated with (A^*, C^*, B^*).

Where $\mathcal{R}_t u(s) := u(t - s)$ is the time reversal operator.

1. We can construct the closed-loop system Σ^- of Σ^d.
2. Or, equivalently, define Σ^- as the dual of Σ^+.
The idea is now to construct the backward observer. There is mainly two ways to do that using the dual of a well-posed linear system.

Dual system

Define \(\Sigma^d \) by

\[
\Sigma^d_t = \begin{bmatrix} T^d_t & \Phi^d_t \\ \Psi^d_t & F^d_t \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & \mathcal{R}_t \end{bmatrix} \begin{bmatrix} T^*_t & \Phi^*_t \\ \Psi^*_t & F^*_t \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & \mathcal{R}_t \end{bmatrix}.
\]

Then \(\Sigma^d \) is a well-posed linear system with input space \(Y \), state space \(X \) and output space \(U \), associated with \((A^*, C^*, B^*) \).

Where \(\mathcal{R}_t u(s) := u(t - s) \) is the time reversal operator.

1. We can construct the closed-loop system \(\Sigma^- \) of \(\Sigma^d \).

2. Or, equivalently, define \(\Sigma^- \) as the dual of \(\Sigma^+ \).

We then obtain the same theorem as for bounded \(C \), using \(z^+ \) and \(z^- \), the respective trajectories of \(\Sigma^+ \) and \(\Sigma^- \), as forward and backward observers.
Introduction

The reconstruction algorithm

Main result
- With bounded observation operator
- With unbounded observation operator

Application

Conclusion
Example

Let

- \(\Omega \subset \mathbb{R}^N, \, N \geq 2, \) with smooth boundary \(\partial \Omega \)
Example

Let

- $\Omega \subset \mathbb{R}^N$, $N \geq 2$, with smooth boundary $\partial \Omega$
- $\partial \Omega = \Gamma_0 \cup \Gamma_1$, $\Gamma_0 \cap \Gamma_1 = \emptyset$
Example

Let

- \(\Omega \subset \mathbb{R}^N, \, N \geq 2 \), with smooth boundary \(\partial \Omega \)
- \(\partial \Omega = \overline{\Gamma_0} \cup \overline{\Gamma_1}, \, \Gamma_0 \cap \Gamma_1 = \emptyset \)

Consider the following wave system

\[
\begin{cases}
\ddot{w}(x,t) - \Delta w(x,t) = 0, & \forall x \in \Omega, \, t > 0, \\
w(x,t) = 0, & \forall x \in \Gamma_0, \, t > 0, \\
w(x,t) = u(x,t), & \forall x \in \Gamma_1, \, t > 0, \\
w(x,0) = w_0(x), \, \dot{w}(x,0) = w_1(x), & \forall x \in \Omega,
\end{cases}
\]

with \(u \) the control, and \((w_0, w_1)\) the initial state.
Observation

Let ν be the unit normal vector of Γ_1 pointing towards the exterior of Ω, we observe the system via

$$y(x, t) = -\frac{\partial(-\Delta)^{-1}w(x, t)}{\partial \nu}, \quad \forall x \in \Gamma_1, t > 0.$$
Observation

Let ν be the unit normal vector of Γ_1 pointing towards the exterior of Ω, we observe the system via

$$y(x, t) = -\frac{\partial (\Delta)^{-1} w(x, t)}{\partial \nu}, \quad \forall x \in \Gamma_1, t > 0.$$

Observation

Let ν be the unit normal vector of Γ_1 pointing towards the exterior of Ω, we observe the system via

$$y(x, t) = -\frac{\partial(-\Delta)^{-1}w(x, t)}{\partial \nu}, \quad \forall x \in \Gamma_1, t > 0.$$

- Curtain and Weiss (SIAM J. Control Optim., 2006) ⇒ construction of forward and backward observers (formally $A^\pm = \pm A - C^*C$).
Let ν be the unit normal vector of Γ_1 pointing towards the exterior of Ω, we observe the system via

$$y(x, t) = -\frac{\partial (\Delta)^{-1} w(x, t)}{\partial \nu}, \quad \forall x \in \Gamma_1, t > 0.$$

- Guo and Zhang (SIAM J. Control Optim., 2005) \Rightarrow well-posed linear system.
- Curtain and Weiss (SIAM J. Control Optim., 2006) \Rightarrow construction of forward and backward observers (formally $A^\pm = \pm A - C^*C$).
- So we can use the algorithm.
For instance, let us consider the following configuration

\[\Gamma_0 \]

\[\Omega \]

\[\Gamma_1 \]
For instance, let us consider the following configuration
Choosing a suitable initial data

- \(\text{Supp}(w_0) \) has three components \(W_1, W_2 \) and \(W_3 \), such that
 - \(W_1 \subset V_{\text{Obs}} \)
 - \(W_2 \subset V_{\text{Unobs}} \)
 - \(W_3 \cap V_{\text{Obs}} \neq \emptyset \) and \(W_3 \cap V_{\text{Unobs}} \neq \emptyset \)

- \(w_1 \equiv 0 \)
Choosing a suitable initial data

- \text{Supp}(w_0) \) has three components \(W_1, W_2 \) and \(W_3 \), such that
 - \(W_1 \subset V_{\text{Obs}} \)
 - \(W_2 \subset V_{\text{Unobs}} \)
 - \(W_3 \cap V_{\text{Obs}} \neq \emptyset \) and \(W_3 \cap V_{\text{Unobs}} \neq \emptyset \)

- \(w_1 \equiv 0 \)

To perform the test, we use

- Gmsh: a 3D finite element grid generator
- GetDP: a general finite element solver

\begin{quote}
G. Haine and K. Ramdani

Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations
(Numerische Mathematik (Numer. Math.), 2012)
\end{quote}
The initial position (Left) and its reconstruction (Right) after 3 iterations

⇒ 6% of relative error in $L^2(\Omega)$ on the “observable part”.
1 Introduction

2 The reconstruction algorithm

3 Main result
 • With bounded observation operator
 • With unbounded observation operator

4 Application

5 Conclusion
Conclusion

More?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), January 2014)
More?

G. Haine
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator (Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine
An observer-based approach for thermoacoustic tomography (Mathematical Theory of Networks and Systems (MTNS – Gröningen), July 2014)
Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), *January 2014*)

Application to thermo-acoustic tomography:

G. Haine

An observer-based approach for thermoacoustic tomography

(Mathematical Theory of Networks and Systems (MTNS – Gröningen), *July 2014*)

Still to be done:

- Stability of V_{Obs} and V_{Unobs} with noisy observation y
- Generalization ($A^* \neq -A$)
- Optimization of γ