OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Modular multilevel converters for hvdc power stations

Serbia, Nicola. Modular multilevel converters for hvdc power stations. PhD, Institut National Polytechnique de Toulouse, 2014

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002658/

Abstract

This work was performed in the frame of collaboration between the Laboratory on Plasma and Energy Conversion (LAPLACE), University of Toulouse, and the Second University of Naples (SUN). This work was supported by Rongxin Power Electronic Company (China) and concerns the use of multilevel converters in High Voltage Direct Current (HVDC) transmission. For more than one hundred years, the generation, the transmission, distribution and uses of electrical energy were principally based on AC systems. HVDC systems were considered some 50 years ago for technical and economic reasons. Nowadays, it is well known that HVDC is more convenient than AC for overhead transmission lines from 800 - 1000 km long. This break-even distance decreases up to 50 km for underground or submarine cables. Over the twenty-first century, HVDC transmissions will be a key point in green electric energy development. Due to the limitation in current capability of semiconductors and electrical cables, high power applications require high voltage converters. Thanks to the development of high voltage semiconductor devices, it is now possible to achieve high power converters for AC/DC conversion in the GW power range. For several years, multilevel voltage source converters allow working at high voltage level and draw a quasi-sinusoidal voltage waveform. Classical multilevel topologies such as NPC and Flying Capacitor VSIs were introduced twenty years ago and are nowadays widely used in Medium Power applications such as traction drives. In the scope of High Voltage AC/DC converters, the Modular Multilevel Converter (MMC), proposed ten years ago by Professor R. Marquardt from the University of Munich (Germany), appeared particularly interesting for HVDC transmissions. On the base of the MMC principle, this thesis considers different topologies of elementary cells which make the High Voltage AC/DC converter more flexible and easy suitable respect to different voltage and current levels. The document is organized as follow. Firstly, HVDC power systems are introduced. Conventional configurations of Current Source Converters (CSCs) and Voltage Source Converters (VSCs) are shown. The most attractive topologies for VSC-HVDC systems are analyzed. The operating principle of the MMC is presented and the sizing of reactive devices is developed by considering an open loop and a closed loop control. Different topologies of elementary cells offer various properties in current or voltage reversibility on the DC side. To compare the different topologies, an analytical approach on the power losses evaluation is achieved which made the calculation very fast and direct. A HVDC link to connect an off-shore wind farm platform is considered as a case study. The nominal power level is 100 MW with a DC voltage of 160 kV. The MMC is rated considering press-packed IGBT and IGCT devices. Simulations validate the calculations and also allow analyzing fault conditions. The study is carried out by considering a classical PWM control with an interleaving of the cells. In order to validate calculation and the simulation results, a 10kW three-phase prototype was built. It includes 18 commutation cells and its control system is based on a DSP-FGPA platform.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Ladoux, Philippe and Pompeo, Marino
Statistics:download
Deposited By: admin admin
Deposited On:07 May 2014 21:58

Repository Staff Only: item control page