OATAO - Open Archive Toulouse Archive Ouverte Open Access Week

Eco-design of chemical processes: an integrated approach coupling process modeling, life cycle assessment and multi-objective optimization

Morales-Mendoza, Luis Fernando. Eco-design of chemical processes: an integrated approach coupling process modeling, life cycle assessment and multi-objective optimization. PhD, Institut National Polytechnique de Toulouse, 2013

[img]
Preview
(Document in English)

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB

Official URL: http://ethesis.inp-toulouse.fr/archive/00002559/

Abstract

The objective of this work is to propose an integrated and generic framework for eco-design coupling traditional modelling and flowsheeting simulation tools (HYSYS, COCO, ProSimPlus and Ariane), Life Cycle Assessment, multi-objective optimization based on Genetic Algorithms and multiple criteria decision-making methods MCDM (Multiple Choice Decision Making, such as ELECTRE, PROMETHEE, M-TOPSIS) that generalizes, automates and optimizes the evaluation of the environmental criteria at earlier design stage. The approach consists of three main stages. The first two steps correspond respectively to process inventory analysis based on mass and energy balances and impact assessment phases of LCA methodology. Specific attention is paid to the main issues that can be encountered with database and impact assessment i.e. incomplete or missing information, or approximate information that does not match exactly the real situation that may introduce a bias in the environmental impact estimation. A process simulation tool dedicated to production utilities, Ariane, ProSim SA is used to fill environmental database gap, by the design of specific energy sub modules, so that the life cycle energy related emissions for any given process can be computed. The third stage of the methodology is based on the interaction of the previous steps with process simulation for environmental impact assessment and cost estimation through a computational framework. The use of multi-objective optimization methods generally leads to a set of efficient solutions, the so-called Pareto front. The next step consists in identifying the best ones through MCDM methods. The approach is applied to two processes operating in continuous mode. The capabilities of the methodology are highlighted through these case studies (benzene production by HDA process and biodiesel production from vegetable oils). A multi-level assessment for multi-objective optimization is implemented for both cases, the explored pathways depending on the analysis and antagonist behaviour of the criteria.

Item Type:PhD Thesis
Uncontrolled Keywords:
Institution:Université de Toulouse > Institut National Polytechnique de Toulouse - INPT (FRANCE)
Laboratory name:
Research Director:
Azzaro-Pantel, Catherine and Pibouleau, Luc
Statistics:download
Deposited By: admin admin
Deposited On:24 Apr 2014 21:58

Repository Staff Only: item control page